
Graffiti: A Framework for Testing Collaborative Distribute d Metadata

Nikhil Bobb Damian Eads Mark W. Storer Scott A. Brandt CarlosMaltzahn
Ethan L. Miller

1. Introduction

The growth in metadata has been triggered by two key
catalyzing events. The first is the explosive growth in stor-
age size and storage demands. As the number and variety
of files grows the need for metadata to organize this infor-
mation windfall becomes more critical. An example of this
need for metadata can be seen in music collections where
filenames and folders alone are not sufficient to organize
a sizable collection. Instead most users rely on external
programs to dynamically organize their collection based on
rich metadata. This need for organizing has influenced the
second key factor which is the additional metadata capa-
bilities that have been built into modern operating systems
and application level programs. The problem of organizing
large amounts of information has thus lead to the explo-
ration of new metadata structures and metadata operations.

While this rich metadata helps users wade through large
volumes of information, there is also the problem that
metadata is often confined within the scope of a single pro-
gram or single system. The metadata that shows up along-
side a particular photo in one photo library program may
not appear in another. Additionally, the metadata capabil-
ities on one system may not exist on another. In this case
moving files from one system to another has the effect of
wiping clean much of the file’s metadata and leaving only
the raw data behind. This has the unintended consequence
of deterring users from utilizing the full capabilities of a
rich metadata system if that user fears being locked into a
single program or platform.

We propose a distributed metadata layer which exists
above the file system. The purpose of this layer is to man-
age the metadata for a collection of systems and make this
metadata available to applications through well-published
interfaces. Separating the metadata management from the
application has the dual benefit of freeing application de-
signers from the problem of metadata storage as well as
making metadata available across applications and sys-
tems. This distributed design also encourages the develop-
ment of a new class of applications that harness the power
of a shared metadata library. Such a library could assist in

searching for data within a collection of systems as well as
encourage collaborative organization of data.

2. Distributed Metadata

In its current design, Graffiti provides three distributed
metadata capabilities: tags, links, and indices. Tags are
short text labels associated with a file. Two files that share a
tag in common suggest a possible relationship, thus a group
of files that share a tag in common have an implicit loose
grouping. In contrast, links are an explicit relationship be-
tween two files. Unlike the relationship imposed by tags,
links have an explicit source and destination. Indices can
be shared on features such as text content, image features,
and video content. Once indices are shared, they can enable
fast distributed search and location of files.

As the number of files increases filenames begin to lose
some of their meaning as their purpose is unclear outside of
a context within the file system. An example of this would
be a Makefile. On a single system there may be many files
with the name “makefile” and their name alone is not suf-
ficient to positively identify the file. This scenario is exac-
erbated in a large distributed context where the number of
files can be extremely large. To remedy this, Graffiti refer-
ences files in a non-local context by their SHA-256 check-
sum, thus making sure that all identical copies of a file can
be positively identified. This use of checksums as a global
file identification allows the system to share metadata on
matching files across the entire distributed system. In the
local context, the user or application will have access to a
set of tags and links which they have set. In a distributed
context, the system will leverage all available tags, links
and indices to allow better search and organization of files.

3. Preliminary Design

Our distributed metadata file system is an overlay net-
work consisting of client systems and federated servers.
The client layer allows the client to take advantage of cer-
tain metadata operations even if they are disconnected from

elm
Text Box
This paper appeared at the 7th Workshop on Distributed Data and Structures (WDAS 2006), Santa Clara, CA, January 2006.



the network while federated servers allow ubiquitous meta-
data access as well enabling richer metadata structures.

3.1. Architecture

The overlay architecture provides two key features. The
first is that it is possible to add the distributed metadata
features to any existing file system without effecting the
underlying structure of the file system. In this manner it
is possible to quickly deploy the capabilities of the system
with a minimum of effort and the lowest possible risk to a
system’s data contents. The second benefit is that it pro-
vides a useful test bed for new metadata structures such as
tags and links. Testing new metadata structures and oper-
ations in the file system can be quite time consuming in
terms of engineering and testing resources. By moving the
features to the application layer it is possible to quickly de-
velop and test new operations on existing data with little to
no impact on the underlying system. This test bed is espe-
cially helpful for discovering new uses of novel metadata
primitives and operations not imagined by their designer.
By providing a platform to produce tools and application
that utilizes these new metadata structures, valuable usage
model data as well as new uses can be obtained.

The architecture for the client consists of a application
layer overlay and integrated relational database. This al-
lows the client to quickly access local metadata as well as
provides the client access to metadata when it is discon-
nected from the network. Files on the client are identi-
fied by a SHA-256 checksum. The database is accessible
by a metadata engineer so that tables can be added as re-
quired. This is considered important since new tables may
be needed in order to implement new metadata structures
or to aid in gathering usage model and workload data.

Above the clients there is an array of federated servers.
Changes at the client level can be synchronized with the
server to allow system wide searches of metadata. These
system wide searches are also enabled by inter-server com-
munication. As with the client the server database is also
accessible for modification for the purposes of adding func-
tionality or data collection capabilities.

One of the key purposes of the current design is for test-
ing and evaluation of metadata structures and operations.
Thus an important aspect of the system is logging. While
the ordering of logged events can be totally ordered within
the context of a single system the use of time-stamps with
a synchronized clock will allow, in the very least, a par-
tial ordering of events on a system level view. This may
be expanded to include communication protocols to allow
a more complete ordering of system-wide events.

3.2. Security

We have come up with a preliminary security model
which reflects some of the functionality we would like to
add to the system. The system has two security categories:
metadata and ownership. Each of these two categories can
be set to either private or public. The metadata category
reflects the access to your metadata which you grant to the
public. The ownership category allows you to publicly ac-
knowledge or deny that you own a file.

As an example, public metadata would be used to share
the genre of an MP3 file. Private metadata could also be
used to hide that I have tagged the PDF agenda of a meeting
“boring”. Public ownership might apply when entertaining
requests for GPL binary libraries, which others might want
to use. Private ownership would be used to hide ownership
of the latest bootlegged software.

4. Usage Scenarios

New metadata structures and operations are often cre-
ated without a specific application in mind. Additionally,
these structures and operations are often found to be ap-
plicable outside of the scope they were created in. Thus
an important part of metadata research is exploring what is
capable and what can be improved by applying novel meta-
data ideas to new scenarios. As part of this active research
area we have identified a few of the current experimental
areas that we have begun to explore using our distributed
metadata file system.

4.1. Collaborative Descriptions and Filtering

Tags have been popularized by online services such as
Flickr and del.icio.us [3, 2, 6]. They offer a way for the
user to easily add descriptive metadata to a file which in
turn allows effective searching of files. On a system such
as Graffiti once a critical mass of user’s is reached who
have files in common, the system can begin to suggest rel-
evant tags. Take for example Alice and Bob who both have
the same file music.mp3 on their independent computers.
If Alice has chosen to share her metadata, and has tagged
music.mp3 with the tag “classical”, then when Bob adds
the file to Graffiti, the system can suggest the tag “classi-
cal”.

The collaborative filtering community (for two recent
surveys see [4, 7]) has developed techniques to map owner-
ship information to recommendations by clustering groups
of users. Such techniques combined with the metadata in
Graffiti could be used to suggest music, video, or academic
papers to a user.

2



4.2. Distributed Indexing and Data Management

Highly distributed, large collections of unsynchronized
data are the norm in today’s multinational organizations.
Due to resource constraints in many such organizations
centralized access and storage of the whole corpus of data
is infeasible. Graffiti could alleviate this situation by fa-
cilitating aggregation of local indices by a series of feder-
ated servers. Distributing indices is a much lighter weight
commitment than transferring all available data, and would
allow system wide data and document search. Taking the
idea even further, agents using Graffiti as a directory could
be responsible for retrieving requested documents from re-
mote locations, as well as caching and mirroring such doc-
uments based on their popularity.

4.3. Package Management

Links allow the system to explicitly define a relationship
between two files. One possible application that could ben-
efit from explicit relationship is package management. The
problem faced by package management schemes is that
files are often dependent upon other files and thus copy-
ing data between system is not as straight-forward as it
would appear. Additionally, current package management
schemes often require the users to commit to a particular
package management tool in order to maintain consistency
within the system or require a dedicated central server to
house a repository [11]. Links may allow a new type of
package management that would be lighter in weight and
useful for quickly packaging and distributing files such as
LATEXdocuments.

One simple use of links within the file system is to estab-
lish dependency relationships between files. For example,
a program source file might link to a makefile, libraries,
headers and other related files. Since links carry an ex-
plicit direction there might also be a link from the makefile
to all the files it references. In this manner a dependency
search starting from any given node could quickly produce
a graph describing the related files. This example of a pro-
gram source file linking to a makefile and a makefile link-
ing to a source file brings up an important question about
the semantics of links within a file system. What direction
should a link point? More abstractly, what are the seman-
tics of a link in a file system. Does it make more sense
for a makefile to point to source files or a for source files
to point to a makefile. This problem is made more con-
fusing when the transitive closures between linked files is
examined or what it means to encounter a cycle within the
graph of links. A metadata primitive that could help define
the semantics of the links are attributes that can be attached
to links. These attributes are key-value pairs that describe
a link. A link with no attributes states:4 “There is a rela-

tionship between these files” while a link with one more
attributes might be able to state, “File A can be generated
from file B”. In this manner a link from a makefile to a
source file and a link from the source file to a makefile can
be distinguished as representing distinct relationships.

As with other possible applications there are many open
questions with package management using attributed links.
The overlay network design of the system as described in
section 3.1 allows us to easily explore many of these ques-
tions.

For example, there may exist conditional links that are
only required under certain conditions. This leads to the
question of the best way to encode this conditional behav-
ior. Additionally the distributed nature of the system may
allow these conditional dependencies to be obtained only
when needed and thus the system may want to support links
to files that it does not currently have. In other words, the
system knows that the file exists, when it would need them,
and how to obtain it even though it does not presently need
it. This conditional linking may be further optimized by
recommended links. For example, a link might suggest
that while the file linked to is not required it is strongly
recommended. This would be useful when recommending
dependencies such as a codec for a video file.

4.4. Scientific Data Management

Scientific data management needs new approaches for
organizing, sharing, and using masses of scientific data
among a large community of users, especially in a decen-
tralized and distributed context. Our approach of com-
bining tags, links, and indices is well-suited to meet
these needs. First, organization is greatly enhanced by
the semantically-rich data layouts facilitated by metadata.
These layouts enable fast, context-dependent query and re-
trieval of scientific data. Second, the distributed nature
of Graffiti encourages scientific collaboration and sharing–
two essential components of scientific inquiry. Third, Graf-
fiti greatly simplifies the scientific programmer’s task of
managing data; scientists can focus their efforts on using
data as opposed to getting to it.

The field of scientific computing will demand well-
organized distributed storage systems. Geophysical sen-
sors collect data at an overwhelming rate. For example,
LANDSAT-7 collects approximately 150 GB of data per
day[10]. IKONOS collects over 1100 images per day [8].
EOSDIS has a storage archive that exceeds one petabyte
[12]. The Rosetta Genomics Group projects that their stor-
age needs for their Human Genome Database will grow
from 10 TB to 100 TB [9]. As the mass-storage needs
of science grow, data organization becomes a much bigger
challenge.

Named relational links enables flexible organization of

3



files leading to easier navigating, more intelligent query-
ing, and adaptive clustering. Suppose a university is con-
ducting a multi-year study of farm health to support more
accurate modeling of crop yields. This study might require
the use of data collected from multiple kinds of sensors.
Infrared sensors, which measure heat emitted from objects
being sensed, are good indicators of crop health. Multi-
spectral sensors can provide a rich spectral profile to help
distinguish between heat emitters, say roof tops and crops.
Panchromatic sensors provide very fine-grained spatial res-
olution which can greatly aid visual analysis of data. Also
associated with the scene might be topographical surveys or
land-cover classification maps. These maps may be vector-
ized or rasterized, and depending on their format, and may
require different format reading routines to process them
as input into a scientific application. Sensors exhibit dif-
ferent properties: they have different band centers, widths,
calibration parameters, artifacts. A particular sensor, such
as a lens, may always produce an artifact such as a blur at
a particular spot, and thus a sensor-specific preprocessing
routine may be needed to eliminate such artifacts. A sen-
sor might also annotate a scene with a tag to indicate the
cloud-cover or time of day the image was taken. Ground-
based lightning triangulators can be used to measure storm
history. Temperature time series provides a history of the
temperature conditions of the scene. Sensors may take mul-
tiple measurements over time, which is useful for temporal-
oriented modeling. A scene might be adjacent to other
scenes under study. Thus, we see that a single composite
observation can be quite complicated. Distributed metadata
can be used to address several key issues:

• modalities: Data is captured in different modalities,
e.g. images, vectorized maps, time series, and spec-
trograms. These modalities can be easily related us-
ing links, and searched using tags. Additionally, a
“format” link can be invoked to appropriately locate
a format reading routine.

• sensor differences: Even very similar sensors may
differ in minor ways, and thus, may require different
processing algorithms. An index on a sensor feature
might help locate an artifact removal algorithm.

• time: Data from the same sensor might be collected
at different times. The data files at different can be
linked together in sequence using links.

• processing algorithms: Different combinations of
sensors may require different models. These models
can be found by invoking a link on a group of sensors.

• indexing related data: Links enable related data to be
quickly retrieved. For example, the hash of a satellite
image might link to all the maps that overlap.

Graffiti metadata provides a means for organizing com-
plicated sets of distributed scientific data files through de-
scriptive linking, tagging, and indexing.

Scientific applications often need to manipulate large
quantities of data scattered about the file system. Tradi-
tionally, writing programs which make use of many files is
cumbersome. The programmer must manage a list of files
in some way, and generate valid path names to get to these
files. Path names often change as files are moved over the
network or about the file system. Graffiti offers a greatly
simplified interface for the programmer; management of
related files is embedded into the system. This will reduce
the complexity of writing scientific applications, users can
invest more of their time on how to use data, and focus less
on where to find them.

Graffiti is navigated via named links between files. A
semantically rich description of the relation between files
on the system will influence application design. Rather
than sifting through flat directories looking for related files,
applications can directly load related files by invoking a
name. As we saw in our crop health study example, to
find an appropriate artifact removal algorithm, the program
simply invokes a “artifact removal algorithm” on a data file
its already loaded to immediately retrieve and execute the
appropriate algorithm.

5. Implementation

We have implemented a first prototype of the pro-
posed system as a Java client and a single mySQL server.
Client/server communication uses Java’s RMI which is in-
secure but sufficient for the purposes of the initial proto-
type. For future prototypes we will use secure HTTP.

The prototype client allows users to search for files by
conjunctions of tags and to edit tags of one or more files.
The prototype uses Apache Derby [1] as an embedded rela-
tional database written entirely in Java. Since the database
runs within the same Java Virtual Machine as the applica-
tion the installation of the client is worry free on Linux,
Windows, Mac OS, and other common platforms that sup-
port J2SE (Java 2.0 Standard Edition).

Users interact with the client either via a graphical user
interface or a command line interface. The command line
interface allows the use of Graffiti functionality in scripts
that implement, say, administrative functions such as regu-
lar backups or automatic tagging based on file content.

6. Related Work

We are currently not aware of work that investigates col-
laborative management of file metadata that works across
file systems and is independent of any particular file sys-

4



tem. We already mentioned examples of collaborative tag-
ging of Web content such as del.icio.us. Web sites such
as Amazon.com provide good examples for collaborative
filtering in form of product recommendations based on a
combination of individual and collective user behavior.

The Presto document management system extends tra-
ditional file systems with arbitrary attributes [5] that allow
files to be grouped and searched by these attributes. The
system presents itself as a file system and can mount other
file systems via NFS and extending them with Presto func-
tionality. Thus Presto’s approach to providing metadata
across multiple file systems is accomplished by a layered
architecture that duplicates and mimics traditional file sys-
tem functionality in addition to extended Presto function-
ality. Graffiti on the other hand maps directly to file con-
tent independent from any particular file system structure
and strictly compliments traditional file system functional-
ity. In addition we focus on collaborative management of
metadata across many users.

7. Conclusions and Outlook

Graffiti currently is designed to share three kinds of
metadata: links, tags and indices. We propose a metadata
sharing framework that enables applications such as pack-
age management, distributed data management, distributed
indexing, and search.

There are many open questions on distributed metadata
which we are currently investigating. Amongst them are
the privacy implications of shared metadata, efficient clus-
tering methods to leverage shared metadata, and local event
management leading to database updates.

One of the largest privacy concerns we have is how can
we store and backup private metadata in a way that cannot
be subpoenaed and not be traced back to it’s original owner
without compromising it’s utility. We are in the process of
evaluating peer-to-peer network architectures that are try-
ing to address this issue.

References

[1] The apache derby project.
http://db.apache.org/derby/.

[2] del.icio.us. http://del.icio.us, Nov 2005.

[3] Flickr - photo sharing. http://www.flickr.com, Nov
2005.

[4] John S. Breese, David Heckerman, and Carl Kadie.
Empirical analysis of predictive algorithms for collab-
orative filtering. InFourteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 43–52. Morgan
Kaufman, 1998.

[5] Paul Dourish, W. Keith Edwards, Anthony LaMarca,
and Michael Salisbury. Presto: an experimental ar-
chitecture for fluid interactive document spaces.ACM
Trans. Comput.-Hum. Interact., 6(2):133–161, 1999.

[6] Scott A. Golder and Bernardo A. Huberman. The
structure of collaborative tagging systems. Technical
report, Information Dynamic Lab, HP Labs, 2005.

[7] Jonathan L. Herlocker, Joseph A. Konstan,
Al Borchers, and John Riedl. An algorithmic
framework for performing collaborative filtering.
In SIGIR ’99: Proceedings of the 22nd annual
international ACM SIGIR conference on Research
and development in information retrieval, pages
230–237, New York, NY, USA, 1999. ACM Press.

[8] Space Imaging. Space imaging releases
top 10 IKONOS satellite images for 2003.
http://www.spaceimaging.com/newsroom/2004top10.htm,
2003.

[9] Microsoft. Rosetta genomics 10 tb human genome
database., 2003.

[10] NASA. FGDC annual report to OMB.
http://www.allaboutmems.com/memsapplications.html,
2003.

[11] John P. Rouillard and Richard B. Martin. Depot-
lite: A mechanism for managing software. In8th
USENIX System Administration Conference (LISA
VIII) Proceedings. University of Massachusetts at
Boston, USENIX, Sep 1994.

[12] UCAR. AIST NRA-02 presenta-
tion to SSO, 2002. Available at
http://www.esmf.ucar.edu/esmfpresentations/pres0507 lipingdi.ppt.

5




