
GF-Complete: A Comprehensive Open Source Library for Galois
Field Arithmetic

Version 1.0

James S. Plank∗ Ethan L. Miller Kevin M. Greenan Benjamin A. Arnold
John A. Burnum Adam W. Disney Allen C. McBride

October 9, 2013

Technical Report UT-CS-13-716
Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville, TN 37996
http://www.cs.utk.edu/ ˜ plank/plank/papers/CS-13-716.html

This is a user’s manual for GF-Complete, version 1.0. This release supersedes version 0.1 and represents the first
major release of GF-Complete. To our knowledge, this library implements every Galois Field multiplication technique
applicable to erasure coding for storage, which is why we named it GF-Complete. The primary goal of this library is
to allow storage system researchers and implementors to utilize very fast Galois Field arithmetic for Reed-Solomon
coding and the like in their storage installations. The secondary goal is to allow those who want to explore different
ways to perform Galois Field arithmetic to be able to do so effectively.

If You Use This Library or Document

Please send me an email to let me know how it goes. Or send me an email just to let me know you are using the
library. One of the ways in which we are evaluated both internally and externally is by the impact of our work, and if
you have found this library and/or this document useful, we would like to be able to document it. Please send mail to
plank@cs.utk.edu. Please send bug reports to that address as well.

The library itself is protected by the New BSD License. It is free to use and modify within the bounds of this
license. To the authors’ knowledge, none of the techniques implemented in this library have been patented, and the
authors are not pursing patents.

∗plank@cs.utk.edu (University of Tennessee),elm@cs.ucsc.edu (UC Santa Cruz),kmgreen2@gmail.com (Box). This material
is based upon work supported by the National Science Foundation under grants CNS-0917396, IIP-0934401 and CSR-1016636, plus REU sup-
plements CNS-1034216, CSR-1128847 and CSR-1246277. Thanks to Jens Gregor for helping us wade through compilation issues, and for Will
Houston for his initial work on this library.

1

2

Finding the Code

Please seehttp://www.cs.utk.edu/ ˜ plank/plank/papers/CS-13-716.html to get thetar file for this code.
This code is actively maintained on bitbucket athttps://bitbucket.org/jimplank/gf-complete .

Two Related Papers

This software acccompanies a large paper that describes these implementation techniques in detail [PGM13a]. We
will refer to this as“The Paper.” You do not have to read The Paper to use the software. However,if you want to
start exploring the various implementations, then The Paper is where you’ll want to go to learn about the techniques
in detail.

This library implements the techniques described in the paper “Screaming Fast Galois Field Arithmetic Using Intel
SIMD Instructions,” [PGM13b]. The Paper describes all of those techniques as well.

If You Would Like Help With the Software

Please contact the first author of this manual.

CONTENTS 3

Contents

1 Introduction 5

2 Files in the Library 6

3 Compilation, especially with regard to the SSE instructions 7

4 Some Tools and Examples to Get You Started 8
4.1 Three Simple Command Line Tools:gf mult , gf div andgf add . 8
4.2 Quick Starting Example #1: Simple multiplication and division . 9
4.3 Quick Starting Example #2: Multiplying a region by a constant . 10
4.4 Quick Starting Example #3: Usingw = 64 . 11
4.5 Quick Starting Example #4: Usingw = 128 . 11

5 Important Information on Alignment when Multiplying Regi ons 12

6 The Defaults 13
6.1 Changing the Defaults 15

6.1.1 Changing the Components of a Galois Field withcreate gf from argv() 15
6.1.2 Changing the Polynomial 16
6.1.3 Changing the Multiplication Technique 17
6.1.4 Changing the Division Technique 19
6.1.5 Changing the Region Technique 19

6.2 Determining Supported Techniques withgf methods . 20
6.3 Testing withgf unit andgf time . 21
6.4 Callinggf init hard() . 22
6.5 gf size() . 24

7 Further Information on Options and Algorithms 24
7.1 Inlining Single Multiplication and Division for Speed .. 24
7.2 Using different techniques for single and region multiplication . 25
7.3 Generalw . 25
7.4 Arguments to “SPLIT ” . 26
7.5 Arguments to “GROUP” . 27
7.6 Considerations with “COMPOSITE ” . 27
7.7 “CARRY FREE” and the Primitive Polynomial 28
7.8 More on Primitive Polynomials 29

7.8.1 Primitive Polynomials that are not Primitive 29
7.8.2 Default Polynomials for Composite Fields 30
7.8.3 The Programgf poly for Verifying Irreducibility of Polynomials 31

7.9 “ALTMAP ” considerations andextract word() . 32
7.9.1 Alternate mappings with “SPLIT ” . 32
7.9.2 Alternate mappings with “COMPOSITE ” . 34
7.9.3 The mapping of “CAUCHY ” . 35

8 Thread Safety 35

CONTENTS 4

9 Listing of Procedures 36

10 Troubleshooting 39

11 Timings 39
11.1 Multiply() 40
11.2 Divide() 40
11.3 Multiply Region() .. . 41

1 INTRODUCTION 5

1 Introduction

Galois Field arithmetic forms the backbone of erasure-coded storage systems, most famously the Reed-Solomon
erasure code. A Galois Field is defined overw-bit words and is termedGF (2w). As such, the elements of a Galois
Field are the integers 0, 1,. . ., 2w − 1. Galois Field arithmetic defines addition and multiplication over these closed
sets of integers in such a way that they work as you would hope they would work. Specifically, every number has a
unique multiplicative inverse. Moreover, there is a value,typically the value 2, which has the property that you can
enumerate all of the non-zero elements of the field by taking that value to successively higher powers.

Addition in a Galois Field is equal to the bitwise exclusive-or operation. That’s nice and convenient. Multiplication
is a little more complex, and there are many, many ways to implement it. The Paper describes them all, and the
following references provide more supporting material: [Anv09, GMS08, LHy08, LD00, LBOX12, Pla97]. The intent
of this library is to implementall of the techniques. That way, their performance may be compared, and their tradeoffs
may be analyzed.

When used for erasure codes, there are typically five important operations:

1. Adding two numbers in GF (2w). That’s bitwise exclusive-or.

2. Multiplying two numbers in GF (2w). Erasure codes are usually based on matrices inGF (2w), and construct-
ing these matrices requires both addition and multiplication.

3. Dividing two numbers in GF (2w). Sometimes you need to divide to construct matrices (for example, Cauchy
Reed-Solomon codes [BKK+95, Rab89]). More often, though, you use division to invert matrices for decoding.
Sometimes it is easier to find a number’s inverse than it is to divide. In that case, you can divide by multiplying
by an inverse.

4. Adding two regions of numbers inGF (2w), which will be explained along with...

5. Mutiplying a region of numbers in GF (2w) by a constant inGF (2w). Erasure coding typically boils down
to performing dot products inGF (2w). For example, you may define a coding disk using the equation:

c0 = d0 + 2d1 + 4d2 + 8d3.

That looks like three multiplications and three additions However, the way that’s implemented in a disk system
looks as in Figure 1. Large regions of disks are partitioned intow-bit words inGF (2w). In the example, let us
suppose thatw = 8, and therefore that words are bytes. Then the regions pictured are 1 KB from each disk.
The bytes on diskDi are labeleddi,0, di,1, . . . , di,1023, and the equation above is replicated 1024 times. For
0 ≤ j < 1024:

c0,j = d0,j + 2d1,j + 4d2,j + 8d3,j .

While it’s possible to implement each of these 1024 equations independently, using the single multiplication
and addition operations above, it is often much more efficient to aggregate. For example, most computer archi-
tectures support bitwise exclusive-or of 64 and 128 bit words. Thus, it makes much more sense to add regions
of numbers in 64 or 128 bit chunks rather than as words inGF (2w). Multiplying a region by a constant can
leverage similar optimizations.

GF-Complete supports multiplication and division of single values for all values ofw ≤ 32, plusw = 64 andw =
128. It also supports adding two regions of memory (for any valueof w, since addition equals XOR), and multiplying
a region by a constant inGF (24), GF (28), GF (216), GF (232), GF (264) andGF (2128). These values are chosen
because words inGF (2w) fit into machine words with these values ofw. Other values ofw don’t lend themselves
to efficient multiplication of regions by constants (although see the“CAUCHY” option in section 6.1.5 for a way to
multiply regions for other values ofw).

2 FILES IN THE LIBRARY 6

Figure 1: An example of adding two regions of numbers, and multiplying a region of numbers by a constant
in GF (2w). In this example,w = 8, and each disk is holding a 1KB region. The same coding equation —
c0,j = d0,j + ad1,j + a2d2,j + a3d3,j is applied 1024 times. However, rather than executing this equation 1024
times, it is more efficient to implement this with three region-constant multiplications and three region-region addi-
tions.

2 Files in the Library

The following files compose GF-Complete. First, the header files:

• gf complete.h: This is the header file that applications should include. Itdefines thegf t type, which holds all
of the data that you need to perform the various operations inGF (2w). It also defines all of the arithmetic oper-
ations. For an application to use this library, you should compile the librarygf complete.aand then applications
includegf complete.hand compile with the library.

• gf method.h: If you are wanting to modify the implementation techniquesfrom the defaults, this file provides
a “helper” function so that you can do it from the Unix commandline.

• gf general.h: This file has helper routines for doing basic Galois Field operations with any legal value ofw.
The problem is thatw ≤ 32,w = 64 andw = 128 all have different data types, which is a pain. The procedures
in this file try to alleviate that pain. They are used ingf unit andgf time. I’m guessing that most applications
won’t use them, as most applications usew ≤ 32.

• gf rand.h: I’ve learned thatsrand48()and its kin are not supported in all C installations. Therefore, this file
defines some random number generators to help test the programs. The random number generator is the “Mother
of All” random number generator [Mar94] which we’ve selected because it has no patent issues.gf unit and
gf time use these random number generators.

• gf int.h: This is an internal header file that the various source files use. This isnot intended for applications to
include.

3 COMPILATION, ESPECIALLY WITH REGARD TO THE SSE INSTRUCTIONS 7

The following C files composegf complete.a. You shouldn’t have to mess with these files, but we include them in
case you have to:

• gf.c: This implements all of the procedures in bothgf complete.handgf int.h.

• gf w4.c: Procedures specific tow = 4.

• gf w8.c: Procedures specific tow = 8.

• gf w16.c: Procedures specific tow = 16.

• gf w32.c: Procedures specific tow = 32.

• gf w64.c: Procedures specific tow = 64.

• gf w128.c: Procedures specific tow = 128.

• gf wgen.c: Procedures specific to other values ofw between 1 and 31.

• gf general.c: Procedures that let you manipulate general values, regardless of whetherw ≤ 32, w = 64
orw = 128. (I.e. the procedures defined ingf general.h).

• gf method.c: Procedures to help you switch between the various implementation techniques. (I.e. the proce-
dures defined ingf method.h).

• gf rand.c: The “Mother of all” random number generator. (I.e. the procedures defined ingf rand.h).

Finally, the following C files are example applications thatuse the library:

• gf mult.c, gf div.c andgf add: Command line tools to do multiplication, division and addition by single num-
bers.

• gf examplex.c: Example programs to help you use the library.

• gf unit.c: A unit tester to verify that all of the procedures work for given values ofw and implementation
options.

• gf time.c: A program that times the procedures for given values ofw and implementation options.

• gf methods.c: A program that enumerates most of the implementation methods supported by GF-Complete.

• gf poly.c: A program to identify irreducible polynomials in regular and composite Galois Fields.

3 Compilation, especially with regard to the SSE instructions

This is not a complex library, so simply usingmakeshould be sufficient. This will compile the library and the example
programs. By default this doesnotutilize SSE optimizations, so that it can compile on as many machines as possible.
However, to do truly fast operations, if your CPU supports SSE instructions, it is best to compile GF-Complete so that
it may leverage them.

4 SOME TOOLS AND EXAMPLES TO GET YOU STARTED 8

The directoryflag tester contains supporting programs for figuring out which SSE instructions GF-Complete can
use on your machine. The shell scriptwhich compile flags.shperforms a battery of tests on your machine, with your
compiler, and emits the proper flags for you to put into theGNUmakefile.

By default,which compile flags.shusescc to build its test programs, because it is fairly standard forcc to be
symlinked to the machine’s default compiler. If you would like to specify which compiler to use, simply pass its name
as a command line argument when running the script. If you do this, don’t forget to specify the CC variable to the
same compiler inGNUmakefile.

In which compile flags.sh, we first test whether your CPU supports SSE2, SSSE3, SSE4.2,and PCLMUL. We
then test your compilation environment by trying to compilesome programs that use those instructions. If it succeeds
we will run the programs and compare the output to the known correct output. Based on the support it discovers, it
will then print out two lines of compilation flags that you should use to replace the defaults in yourGNUmakefile.
For example, this is the output on a machine that supports SSE4.2 and PCLMUL (which is needed to use ALL of the
SSE optimizations) usingclang for the compiler:

UNIX> ./which_compile_flags.sh clang
CFLAGS = -O3 -msse4 -DINTEL_SSE4 -maes -mpclmul -DINTEL_PC LMUL
LDFLAGS = -O3 -msse4 -maes -mpclmul
UNIX>

You should put those lines intoGNUmakefile in place of theCFLAGS andLDFLAGS lines that are currently
there (and you should make sure thatGNUmakefileusesclangas its compiler).

Here’s another machine’s output that only supports up to SSE3 (not the SSSE3 we are looking for):

UNIX> grep model /proc/cpuinfo
model : 4
model name : Intel(R) Pentium(R) 4 CPU 3.40GHz
model : 4
model name : Intel(R) Pentium(R) 4 CPU 3.40GHz
UNIX> ./which_compile_flags.sh
CFLAGS = -O3 -msse2 -DINTEL_SSE2
LDFLAGS = -O3 -msse2
UNIX>

After youmake, the library will be ingf complete.a. To use the library, includegf complete.hin your C programs
and create your executable withgf complete.a.

Keep in mind that even though a given machine may have processor support for certain SSE instructions, a compi-
lation environment may not be able to produce code with the needed machine instructions. For example, the default
compiler in Mac OS 10.8.4 (as of this writing) failed to compile PCLMUL instructions even on Core i-series CPUs
which support the instructions. Using the latest version ofclang (3.3) via MacPorts solved this issue. For that reason,
which compile flags.shtests both the CPU and and compilation environment.

4 Some Tools and Examples to Get You Started

4.1 Three Simple Command Line Tools: gfmult, gf div and gf add

Before delving into the library, it may be helpful to exploreGalois Field arithmetic with the command line tools:
gf mult , gf div andgf add. These perform multiplication, division and addition on elements inGF (2w). The syntax
is:

4 SOME TOOLS AND EXAMPLES TO GET YOU STARTED 9

• gf mult a b w - Multiplies a andb in GF (2w).

• gf div a b w - Dividesa by b in GF (2w).

• gf add a b w - Addsa andb in GF (2w).

You may use any value ofw from 1 to 32, plus 64 and 128. By default, the values are read and printed in decimal;
however, if you append an ’h’ tow, thena, b and the result will be printed in hexadecimal. Forw = 128, the ’h’ is
mandatory, and all values will be printed in hexadecimal.

Try them out on some examples like the ones below. You of course don’t need to know that, for example,5 ∗ 4 = 7
in GF (24); however, once you know that, you know that7

5
= 4 and 7

4
= 5. You should be able to verify thegf add

statements below in your head. As for the othergf mult ’s, you can simply verify that division and multiplication work
with each other as you hope they would.

UNIX> gf_mult 5 4 4
7
UNIX> gf_div 7 5 4
4
UNIX> gf_div 7 4 4
5
UNIX> gf_mult 8000 2 16h
100b
UNIX> gf_add f0f0f0f0f0f0f0f0 1313131313131313 64h
e3e3e3e3e3e3e3e3
UNIX> gf_mult f0f0f0f0f0f0f0f0 1313131313131313 64h
8da08da08da08da0
UNIX> gf_div 8da08da08da08da0 1313131313131313 64h
f0f0f0f0f0f0f0f0
UNIX> gf_add f0f0f0f0f0f0f0f01313131313131313 13131313 13131313f0f0f0f0f0f0f0f0 128h
e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3
UNIX> gf_mult f0f0f0f0f0f0f0f01313131313131313 1313131 313131313f0f0f0f0f0f0f0f0 128h
786278627862784982d782d782d7816e
UNIX> gf_div 786278627862784982d782d782d7816e f0f0f0f0 f0f0f0f01313131313131313 128h
1313131313131313f0f0f0f0f0f0f0f0
UNIX>

Don’t bother trying to read the source code of these programsyet. Start with some simpler examples like the ones
below.

4.2 Quick Starting Example #1: Simple multiplication and division

The next two examples are intended for those who just want to use the library without getting too complex. The
first example isgf example1, and it takes one command line argument –w, which must be between 1 and 32. It
generates two random non-zero numbers inGF (2w) and multiplies them. After doing that, it divides the product by
each number.

To perform multiplication and division inGF (2w), you must declare an instance of thegf t type, and then initialize
it for GF (2w) by callinggf init easy(). This is done ingf example1.cwith the following lines:

4 SOME TOOLS AND EXAMPLES TO GET YOU STARTED 10

gf_t gf;

...

if (!gf_init_easy(&gf, w)) {
fprintf(stderr, "Couldn’t initialize GF structure.\n");
exit(0);

}

Oncegf is initialized, you may use it for multiplication and division with the function pointersmultiply.w32 and
divide.w32. These work for any element ofGF (2w) so long asw ≤ 32.

c = gf.multiply.w32(&gf, a, b);
printf("%u * %u = %u\n", a, b, c);

printf("%u / %u = %u\n", c, a, gf.divide.w32(&gf, c, a));
printf("%u / %u = %u\n", c, b, gf.divide.w32(&gf, c, b));

Go ahead and test this program out. You can usegf mult andgf div to verify the results:

UNIX> gf_example_1 4
12 * 4 = 5
5 / 12 = 4
5 / 4 = 12
UNIX> gf_mult 12 4 4
5
UNIX> gf_example_1 16
14411 * 60911 = 44568
44568 / 14411 = 60911
44568 / 60911 = 14411
UNIX> gf_mult 14411 60911 16
44568
UNIX>

gf init easy()(and latergf init hard()) do callmalloc() to implement internal structures. To release memory, call
gf free(). Please see section 6.4 to see how to callgf init hard() in such a way that it doesn’t callmalloc().

4.3 Quick Starting Example #2: Multiplying a region by a constant

The programgf example2 expands ongf example1. If w is equal to 4, 8, 16 or 32, it performs a region multiply
operation. It allocates two sixteen byte regions,r1 andr2, and then multiplesr1 by a and puts the result inr2 using
themultiply region.w32function pointer:

gf.multiply_region.w32(&gf, r1, r2, a, 16, 0);

That last argument specifies whether to simply place the product intor2 or to XOR it with the contents that are already
in r2. Zero means to place the product there. When we run it, it prints the results of themultiply region.w32 in
hexadecimal. Again, you can verify it usinggf mult :

4 SOME TOOLS AND EXAMPLES TO GET YOU STARTED 11

UNIX> gf_example_2 4
12 * 2 = 11
11 / 12 = 2
11 / 2 = 12

multiply_region by 0xc (12)

R1 (the source): 0 2 d 9 d 6 8 a 8 d b 3 5 c 1 8 8 e b 0 6 1 5 a 2 c 4 b 3 9 3 6
R2 (the product): 0 b 3 6 3 e a 1 a 3 d 7 9 f c a a 4 d 0 e c 9 1 b f 5 d 7 6 7 e
UNIX> gf_example_2 16
49598 * 35999 = 19867
19867 / 49598 = 35999
19867 / 35999 = 49598

multiply_region by 0xc1be (49598)

R1 (the source): 8c9f b30e 5bf3 7cbb 16a9 105d 9368 4bbe
R2 (the product): 4d9b 992d 02f2 c95c 228e ec82 324e 35e4
UNIX> gf_mult c1be 8c9f 16h
4d9b
UNIX> gf_mult c1be b30e 16h
992d
UNIX>

4.4 Quick Starting Example #3: Usingw = 64

The program ingf example3.c is identical to the previous program, except it usesGF (264). Now a, b andc are
uint64 t’s, and you have to use the function pointers that havew64 extensions so that the larger types may be em-
ployed.

UNIX> gf_example_3
a9af3adef0d23242 * 61fd8433b25fe7cd = bf5acdde4c41ee0c
bf5acdde4c41ee0c / a9af3adef0d23242 = 61fd8433b25fe7cd
bf5acdde4c41ee0c / 61fd8433b25fe7cd = a9af3adef0d23242

multiply_region by a9af3adef0d23242

R1 (the source): 61fd8433b25fe7cd 272d5d4b19ca44b7 3870b f7e63c3451a 08992149b3e2f8b7
R2 (the product): bf5acdde4c41ee0c ad2d786c6e4d66b7 43a7 d857503fd261 d3d29c7be46b1f7c
UNIX> gf_mult a9af3adef0d23242 61fd8433b25fe7cd 64h
bf5acdde4c41ee0c
UNIX>

4.5 Quick Starting Example #4: Usingw = 128

Finally, the program ingf example4.cusesGF (2128). Since there is not universal support foruint128 t, the library
represents 128-bit numbers as arrays of twouint64 t’s. The function pointers for multiplication, division andregion
multiplication now accept the return values as arguments:

5 IMPORTANT INFORMATION ON ALIGNMENT WHEN MULTIPLYING REGIONS 12

gf.multiply.w128(&gf, a, b, c);

Again, we can usegf mult andgf div to verify the results:

UNIX> gf_example_4
e252d9c145c0bf29b85b21a1ae2921fa * b23044e7f45daf4d70695fb7bf249432 =
7883669ef3001d7fabf83784d52eb414

multiply_region by e252d9c145c0bf29b85b21a1ae2921fa

R1 (the source): f4f56f08fa92494c5faa57ddcd874149 b4c06 a61adbbec2f4b0ffc68e43008cb
R2 (the product): b1e34d34b031660676965b868b892043 382f 12719ffe3978385f5d97540a13a1
UNIX> gf_mult e252d9c145c0bf29b85b21a1ae2921fa f4f56f0 8fa92494c5faa57ddcd874149 128h
b1e34d34b031660676965b868b892043
UNIX> gf_div 382f12719ffe3978385f5d97540a13a1 b4c06a61 adbbec2f4b0ffc68e43008cb 128h
e252d9c145c0bf29b85b21a1ae2921fa
UNIX>

5 Important Information on Alignment when Multiplying Regi ons

In order to make multiplication of regions fast, we often employ 64 and 128 bit instructions. This has ramifications
for pointer alignment, because we want to avoid bus errors, and because on many machines, loading and manipulating
aligned quantities is much faster than unalinged quantities.

When you performmultiply region.wxx(gf , source, dest, value, size, add), there are three requirements:

1. The pointerssource anddest must be aligned forw-bit words. Forw = 4 andw = 8, there is no restriction;
however forw = 16, the pointers must be multiples of 2, forw = 32, they must be multiples of 4, and for
w ∈ {64, 128}, they must be multiples of 8.

2. Thesize must be a multiple of⌈w
8
⌉. With w = 4 andw = 8, ⌈w

8
⌉ = 1 and there is no restriction. The other

sizes must be multiples of⌈w
8
⌉ because you have to be multiplying whole elements ofGF (2w).

3. Thesource anddest pointers must be aligned identically with respect to each other for the implementation
chosen. This is subtle, and we explain it in detail in the nextfew paragraphs. However, if you’d rather not figure
it out, the following recommendation willalwayswork in GF-Complete:

If you want to be safe, make sure thatsource and dest are both multiples of 16. That is not a
strict requirement, but it will always work!

If you want to relax the above recommendation, please read further.
When performingmultiply region.wxx(), the implementation is typically optimized for a region of bytes whose

size must be a multiple of a variables, and which must be aligned to a multiple of another variablet. For example,
when doingmultiply region.w32() in GF (216) with SSE enabled, the implementation is optimized for regions of
32 bytes, which must be aligned on a 16-byte quantity. Thus,s = 32 andt = 16. However, we don’t wantmulti-
ply region.w32()to be too restrictive, so instead of requiringsource anddest to be aligned to 16-byte regions, we
require that (source mod 16) equal (dest mod 16). Or, in general, that (source modt) equal (dest modt).

Then,multiply region.wxx() proceeds in three phases. In the first phase,multiply.w xx() is called on successive
words until (source mod t) equals zero. The second phase then performs the optimized region multiplication on

6 THE DEFAULTS 13

Figure 2: Example of multiplying a region of 274 bytes inGF (216) when (source mod 16) = (dest mod 16) = 6. The
alignment parameters ares = 32 andt = 16. The multiplication is in three phases, which correspond tothe initial
unaligned region (10 bytes), the aligned region ofs-byte chunks (256 bytes), and the final leftover region (8 bytes).

chunks ofs bytes, until the remaining part of the region is less thans bytes. At that point, the third phase calls
multiply.w xx() on the last part of the region.

A detailed example helps to illustrate. Suppose we make the following call inGF (216) with SSE enabled:

multiply region.w32(gf , 0x10006, 0x20006,a, 274, 0)

First, note thatsource anddest are aligned on two-byte quantities, which they must be inGF (216). Second, note
thatsize is a multiple of⌈ 16

8
⌉ = 2. And last, note that (source mod 16) equals (dest mod 16). We illustrate the three

phases of region multiplication in Figure 2. Because (source mod 16) = 6, there are 10 bytes of unaligned words that
are multiplied with five calls tomultiply.w32() in the first phase. The second phase multiplies 256 bytes (eight chunks
of s = 32 bytes) using the SSE instructions. That leaves 8 bytes remaining for the third phase.

When we describe the defaults and the various implementation options, we specifys andt as “alignment parame-
ters.”

One of the advanced region options is using an alternate mapping of words to memory (“ALTMAP”). These interact
in a more subtle manner with alignment. Please see Section 7.9 for details.

6 The Defaults

GF-Complete implements a wide variety of techniques for multiplication, division and region multiplication. We have
set the defaults with three considerations in mind:

1. Speed:Obviously, we want the implementations to be fast. Therefore, we choose the fastest implementations
that don’t violate the other considerations. The compilation environment is considered. For example, if SSE is

6 THE DEFAULTS 14

enabled, region multiplication inGF (24) employs a single multiplication table. If SSE is not enabled, then a
“double” table is employed that performs table lookup two bytes at a time.

2. Memory Consumption: We try to keep the memory footprint of GF-Complete low. For example, the fastest
way to performmultiply.w32() in GF (232) is to employ 1.75 MB of multiplication tables (see Section 7.4
below). We do not include this as a default, however, becausewe want to keep the default memory consumption
of GF-Complete low.

3. Compatibility with “standard” implementations: While there is node factostandard of Galois Field arith-
metic, most libraries implement the same fields. For that reason, we have not selected composite fields, alternate
polynomials or memory layouts for the defaults, even thoughthese would be faster. Again, see section 7.7 for
more information.

Table 1 shows the default methods used for each power-of-twoword size, their alignment parameterss andt, their
memory consumption and their rough performance. The performance tests are on an Intel Core i7-3770 running at
3.40 GHz, and are included solely to give a flavor of performance on a standard microprocessor. Some processors
will be faster with some techniques and others will be slower, so we only put numbers in so that you can ballpark it.
For other values ofw between 1 and 31, we use table lookup whenw ≤ 8, discrete logarithms whenw ≤ 16 and
“Bytwop” for w ≤ 32.

With SSE
w Memory multiply() Performance multiply region() s t Performance

Usage Implementation (Mega Ops / s) Implementation (MB/s)
4 < 1K Table 501 Table 16 16 11,659
8 136K Table 501 Split Table (8,4) 16 16 11,824
16 896K Log 260 Split Table (16,4) 32 16 7,749
32 < 1K Carry-Free 48 Split Table (32,4) 64 16 5,011
64 2K Carry-Free 84 Split Table (64,4) 128 16 2,402
128 64K Carry-Free 48 Split Table (128,8) 16 16 833

Without SSE
w Memory multiply() Performance multiply region() s t Performance

Usage Implementation (Mega Ops / s) Implementation (MB/s)
4 4K Table 501 Double Table 1 1 1,982
8 128K Table 501 Table 1 1 1,397
16 896K Log 266 Split Table (16,8) 2 2 2,135
32 4K Bytwop 19 Split Table (32,8) 4 4 1,149
64 16K Bytwop 9 Split Table (64,8) 8 8 987
128 64K Bytwop 1.4 Split Table (128,8) 16 8 833

Table 1: The default implementations, memory consumption and rough performance whenw is a power of two. The
variabless andt are alignment variables described in Section 5.

A few comments on Table 1 are in order. First, with SSE, the performance ofmultiply() is faster whenw = 64
than whenw = 32. That is because the primitive polynomial forw = 32, that has historically been used in Galois
Field implementations, is sub-ideal for using carry-free multiplication (PCLMUL). You can change this polynomial
(see section 7.7) so that the performance matchesw = 64.

6 THE DEFAULTS 15

The region operations forw = 4 andw = 8 without SSE have been selected to have a low memory footprint. There
are better options that consume more memory, or that only work on large memory regions (see section 6.1.5).

6.1 Changing the Defaults

There are times that you may want to stray from the defaults. For example:

• You may want better performance.
• You may want a lower memory footprint.
• You may want to use a different Galois Field or even a ring.
• You only care about multiplying a region by the value two.

Our command line tools allow you to deviate from the defaults, and we have two C functions —gf init hard()
andcreate gf from argv() — that can be called from application code to override the default methods. There are six
command-line tools that can be used to explore the many techniques implemented in GF-Complete:

• gf methodsis a tool that enumerates most of the possible command-line arguments that can be sent to the other
tools.

• gf mult andgf div are explained above. You may change the multiplication and division technique in these
tools if you desire.

• gf unit performs unit tests on a set of techniques to verify correctness.

• gf time measures the performance of a particular set of techniques.

• gf poly tests the irreducibility of polynomials in a Galois Field.

To change the default behavior in application code, you needto call gf init hard() rather thangf init easy().
Alternatively, you can usecreate gf from argv(), included fromgf method.h, which uses anargv-style array of
strings to specify the options that you want. The procedure in gf method.cparses the array and makes the proper
gf init hard() procedure call. This is the technique used to parse the command line ingf mult , gf div, gf unit et al.

6.1.1 Changing the Components of a Galois Field with creategf from argv()

There are five main components to every Galois Field instance:

• w

• Multiplication technique
• Division technique
• Region technique(s)
• Polynomial

The proceduresgf init hard() andcreate gf from argv() allow you to specify these parameters when you create
your Galois Field instance. We focus first oncreate gf from argv(), because that is how the tools allow you to specify
the components. The prototype ofcreate gf from argv() is as follows:

int create_gf_from_argv(gf_t * gf, int w, int argc, char ** argv, int starting);

6 THE DEFAULTS 16

You pass it a pointer to agf t, which it will initialize. You specify the word size with theparameterw, and then you
pass it anargc/argv pair as in any C or C++ program. You also specify astarting argument, which is where inargv
the specifications begin. If it successfully parsesargc andargv, then it creates thegf t usinggf init hard() (described
below in section 6.4). It returns one past the last index ofargv that it considered when creating thegf t. If it fails, then
it returns zero, and thegf t is unmodified.

For example,gf mult.c callscreate gf from argv() by simply passingargc andargv from itsmain() declaration,
and settingstarting to 4.

To choose defaults,argv[starting] should equal “-”. Otherwise, you specify the component thatyou are chang-
ing with “-m” for multiplication technique, “-d” for division technique, “-r” for region technique, and “-p” for the
polynomial. You may change multiple components. You end your specification with a single dash. For example, the
following call multiplies 6 and 5 inGF (24) with polynomial 0x19 using the “SHIFT” technique for multiplication
(we’ll explain these parameters later):

UNIX> ./gf_mult 6 5 4 -p 0x19 -m SHIFT -
7
UNIX>

If create gf from argv() fails, then you can call the proceduregf error() , which prints out the reason whycre-
ate gf from argv() failed.

6.1.2 Changing the Polynomial

Galois Fields are typically implemented by representing numbers as polynomials with binary coefficients, and then
using the properties of polynomials to define addition and multiplication. You do not need to understand any of that to
use this library. However, if you want to learn more about polynomial representations and how they construct fields,
please refer to The Paper.

Multiplication is based on a special polynomial that we willrefer to here as the “defining polynomial.” This
polynomial has binary coefficients and is of degreew. You may change the polynomial with “-p” and then a number
in hexadecimal (the leading “0x” is optional). It is assumedthat thew-th bit of the polynomial is set – you may include
it or omit it. For example, if you wish to set the polynomial for GF (216) to x16 + x5 + x3 + x2 + 1, rather than its
default ofx16 + x12 + x3 + x+ 1, you may say “-p 0x1002d,” “-p 1002d,” “-p 0x2d” or “-p 2d.”

We discuss changing the polynomial for three reasons in other sections:

• Leveraging carry-free multiplication (section 7.7).
• Defining composite fields (section 7.6).
• Implementing rings (section 7.8.1).

Some words about nomenclature with respect to the polynomial. A Galois Field requires the polynomial to be
irreducible.. That means that it cannot be factored. For example, when thecoefficients are binary, the polynomialx5+
x4+x+1 may be factored as(x4+1)(x+1). Therefore it is not irreducible and cannot be used to define aGalois Field.
It may, however, be used to define a ring. Please see section 7.8.1 for a discussion of ring support in GF-Complete.

There is a subset of irreducible polynomials calledprimitive. These have an important property that one may enu-
merate all of the elements of the field by raising 2 to successive posers. All of the default polynomials in GF-Complete
are primitive. However, so long as a polynomial is irreducible, it defines a Galois Field. Please see section 7.7 for a
further discussion of the polynomial.

One thing that we want to stress here is that changing the polynomial changes the field, so fields with different
polynomials may not be used interchangeably. So long as the polynomial is irreducible, it generates a Galois Field that

6 THE DEFAULTS 17

is isomorphic to all other Galois Fields; however the multiplication and division of elements will differ. For example,
the polynomials 0x13 (the default) and 0x19 inGF (24) are both irreducible, so both generate valid Galois Fields.
However, their multiplication differs:

UNIX> gf_mult 8 2 4 -p 0x13 -
3
UNIX> gf_mult 8 2 4 -p 0x19 -
9
UNIX> gf_div 3 8 4 -p 0x13 -
2
UNIX> gf_div 9 8 4 -p 0x19 -
2
UNIX>

6.1.3 Changing the Multiplication Technique

The following list describes the multiplication techinques that may be changed with “-m”. We keep the description
here brief. Please refer to The Paper for detailed descriptions of these techniques.

• “TABLE :” Multiplication and division are implemented with tables. The tables consume quite a bit of memory
(2w × 2w ×⌈w

8
⌉ bytes), so they are most useful whenw is small. Please see “SSE,” “ LAZY ,” “ DOUBLE ” and

“QUAD” under region techniques below for further modifications to“TABLE ” to performmultiply region().

• “LOG :” This employs discrete (or “Zeph”) logarithm tables to implement multiplication and division. The
memory usage is roughly (3 × 2w × ⌈w

8
⌉ bytes), so they are most useful whenw is small, but they tolerate

largerw than “TABLE .” If the polynomial is not primitive (see section 6.1.2), then you cannot use “LOG ” as
an implementation. In that case,gf init hard() or create gf from argv() will fail.

• “LOG ZERO:” Discrete logarithm tables which include extra room for zero entries. This more than doubles
the memory consumption to remove anif statement (please see [GMS08] or The Paper for more description). It
doesn’t really make a huge deal of difference in performance.

• “LOG ZERO EXT :” This expends even more memory to remove anotherif statement. Again, please see The
Paper for an explanation. As with “LOG ZERO,” the performance difference is negligible.

• “SHIFT :” Implementation straight from the definition of Galois Field multiplication, by shifting and XOR-ing,
then reducing the product using the polynomial. This isslooooooooow, so we don’t recommend you use it.

• “CARRY FREE:” This is identical to “SHIFT ,” however it leverages the SSE instruction PCLMUL to perform
carry-free multiplications in single instructions. As such, it is the fastest way to perform multiplication for large
values ofw when that instruction is available. Its performance depends on the polynomial used. See The Paper
for details, and see section 7.7 below for the speedups available whenw = 16 andw = 32 if you use a different
polynomial than the default one.

• “BYTWO p:” This implements multiplication by successively multiplying the product by two and selectively
XOR-ing the multiplicand. See The Paper for more detail. It can leverage Anvin’s optimization that multiplies
64 and 128 bits of numbers inGF (2w) by two with just a few instructions. The SSE version requiresSSE2.

6 THE DEFAULTS 18

• “BYTWO b:” This implements multiplication by successively multiplying the multiplicand by two and selec-
tively XOR-ing it into the product. It can also leverage Anvin’s optimization, and it has the feature that when
you’re multiplying a region by a very small constant (like 2), it can terminate the multiplication early. As such,
if you are multiplying regions of bytes by two (as in the LinuxRAID-6 Reed-Solomon code [Anv09]), this is
the fastest of the techniques, regardless of the value ofw. The SSE version requires SSE2.

• “SPLIT :” Split multiplication tables (like the LR tables in [GMS08], or the SIMD tables forw ≥ 8 in [LHy08,
Anv09, PGM13b]). This argument must be followed by two more arguments,wa andwb, which are the index
sizes of the sub-tables. This implementation reduces the size of the table from “TABLE ,” but requires multiple
table lookups. For example, the following multiplies 100 and 200 inGF (28) using two 4K tables, as opposed
to one 64K table when you use “TABLE :”

UNIX> ./gf_mult 100 200 8 -m SPLIT 8 4 -
79
UNIX>

See section 7.4 for additional information on the argumentsto “SPLIT .” The SSE version typically requires
SSSE3.

• “GROUP:” This implements the “left-to-right comb” technique [LBOX12]. I’m afraid we don’t like that name,
so we call it “GROUP,” because it performs table lookup on groups of bits for shifting (left) and reducing (right).
It takes two additional arguments –gs, which is the number of bits you use while shifting (left) andgr, which
is the number of bits you use while reducing (right). Increasing these arguments can you higher computational
speed, but requires more memory. SSE version exists only forw = 128 and it requires SSE4. For more
description on the argumentsgs andgr, see section 7.5. For a full description of “GROUP” algorithm, please
see The Paper.

• “COMPOSITE :” This allows you to perform operations on a composite Galois Field,GF ((2l)k) as described
in [GMS08], [LBOX12] and The Paper. The field sizew is equal tolk. It takes one argument, which isk, and
then a specification of the base field. Currently, the only value ofk that is supported is two. However, that may
change in a future revision of the library.

In order to specify the base field, put appropriate flags afterspecifyingk. The single dash ends the base field,
and after that, you may continue making specifications for the composite field. This process can be contin-
ued for multiple layers of “COMPOSITE .” As an example, the following multiplies 1000000 and 2000000
in GF ((216)2), where the base field usesBYTWO p for multiplication:

./gf mult 1000000 2000000 32 -m COMPOSITE 2 -m BYTWOp - -

In the above example, the red text applies to the base field, and the black text applies to the composite field.

Composite fields have two defining polynomials – one for the composite field, and one for the base field. Thus, if
you want to change polynomials, you should change both. The polynomial for the composite field must be of the
formx2+sx+1, wheres is an element ofGF (2k). To change it, you specifys (in hexadecimal) with “-p.” In the
example below, we multiply 20000 and 30000 inGF ((28)2), settings to three, and usingx8+x4+x3+x2+1
as the polynomial for the base field:

./gf mult 20000 30000 16 -m COMPOSITE 2 -p 0x11d - -p 0x3 -

6 THE DEFAULTS 19

If you use composite fields, you should consider using “ALTMAP ” as well. The reason is that the region
operations will go much faster. Please see section 7.6.

As with changing the polynomial, when you use a composite field, GF ((2l)k), you are using a different field
than the “standard” field forGF (2lk). All Galois Fields are isomorphic to each other, so they all have the
desired properties; however, the fields themselves change when you use composite fields.

With the exception of“COMPOSITE” , only one multiplication technique can be provided for a given Galois
Field instance. Composite fields may use composite fields as their base fields, in which case the specification will be
recursive.

6.1.4 Changing the Division Technique

There are two techniques for division that may be set with “-d”. If “-d” is not specified, then appropriate defaults
are employed. For example, when the multiplication technique is “TABLE ,” a table is created for division as well as
multiplication. When “LOG ” is specified, the logarithm tables are used for division. With “COMPOSITE ,” a special
variant of Euclid’s algorithm is employed that performs division using multiplication and division in the base field.
Otherwise, Euclid’s algorithm is used. Please see The Paperfor a description of Euclid’s algorithm applied to Galois
Fields.

If you use “-d”, you must also specify the multiplication technique with “-m.”
To force Euclid’s algorithm instead of the defaults, you mayspecify it with “-d EUCLID.” If instead, you would

rather convert elements of a Galois Field to a binary matrix and find an element’s inverse by inverting the matrix,
then specify “-d MATRIX.” In all of our tests, “MATRIX ” is slower than “EUCLID .” “ MATRIX ” is also not defined
for w > 32.

6.1.5 Changing the Region Technique

The following are the region multiplication options (“-r”):

• “SSE:” Use SSE instructions. Initialization will fail if the instructions aren’t supported. Table 2 details the
multiplication techniques which can leverage SSE instructions and which versions of SSE are required.

Multiplication multiply() multiply region() SSE Comments
Technique Version
“TABLE ” - Yes SSSE3 Only forGF (24).
“SPLIT ” - Yes SSSE3 Only when the second argument equals 4.
“SPLIT ” - Yes SSE4 Whenw = 64 and not using “ALTMAP ”.
“BYTWO p” - Yes SSE2
“BYTWO b” - Yes SSE2
“GROUP” Yes Yes SSE4 Only forGF (2128).

Table 2: Multiplication techniques which can leverage SSE instructions when they are available.

• “NOSSE:” Force non-SSE version.

• “DOUBLE :” Use a table that is indexed on two words rather than one. This applies only tow = 4, where
the table is indexed on bytes rather than 4-bit quantities, and tow = 8, where the table is indexed on shorts

6 THE DEFAULTS 20

rather than bytes. In each case, the table lookup performs two multiplications at a time, which makes region
multiplication faster. It doubles the size of the lookup table.

• “QUAD:” Use a table that is indexed on four words rather than two or one. This only applies tow = 4, where
the table is indexed on shorts. The “Quad” table may be lazilycreated or created ahead of time (the default). If
the latter, then it consumes24 × 216 × 2 = 2 MB of memory.

• “LAZY :” Typically it’s clear whether tables are constructed uponinitialization or lazily when a region operation
is performed. There are two times where it is ambiguous: “QUAD” whenw = 4 and “DOUBLE ” whenw = 8.
If you don’t specify anything, these tables are created uponinitialization, consuming a lot of memory. If you
specify “LAZY ,” then the necessary row of the table is created lazily when you call“multiply region().

• “ALTMAP :” Use an alternate mapping, where words are split across different subregions of memory. There
are two places where this matters. The first is when implementing “SPLIT w 4” using SSE whenw > 8. In
these cases, each byte of the word is stored in a different 128-bit vector, which allows the implementation to
better leverage 16-byte table lookups. See section 7.4 for examples, and The Paper or [PGM13b] for detailed
explanations.

The second place where it matters is when using “COMPOSITE .” In this case, it is advantageous to split each
memory region into two chunks, and to store half of each word in a different chunk. This allows us to call
region multiply() recursively on the base field, which ismuchfaster than the alternative. See Section 7.6 for
examples, and The Paper for an explanation.

It is important to note that with “ALTMAP ,” the words are not “converted” from a standard mapping to an
alternate mapping and back again. They are assumed to alwaysbe in the alternate mapping. This typically
doesn’t matter, so long as you always use the same “ALTMAP ” calls. Please see section 7.9 for further details
on “ALTMAP ,” especially with respect to alignment.

• “CAUCHY :” Break memory intow subregions and perform only XOR’s as in Cauchy Reed-Solomoncod-
ing [BKK+95] (also described in The Paper). This works forany value ofw ≤ 32, even those that are not
powers of two. If SSE2 is available, then XOR’s work 128 bits at a time. For “CAUCHY ” to work correctly,
sizemust be a multiple ofw.

It is possible to combine region multiplication options. This is fully supported as long asgf methodshas the combi-
nation listed. If multiple region options are required, they should be specified independently (as flags forgf init hard()
and independent options for command-line tools andcreate gf from argv()).

6.2 Determining Supported Techniques with gfmethods

The programgf methodsprints a list of supported methods on standard output. It simply enumerates flag combinations
and tests to see if they initialize without error.gf methods does not test whether a method is working correctly
(although it should be correct – we simply haven’t tested every combination of flags on every machine/compiler that
exists in the world); it only prints out the method if it is supported by the machine and compiler flags. Some method
combinations are not printed, such as multi-layer composite methods.gf methodsdoes not take any command line
arguments.

gf methodsprints a line for each supported combination of flags, using the following format:

w=<w-value>: -m <mult> -r <region-1> -r <region-2> ... -r <r egion-n> -d <division> -

gf methodsprints the format of the stringargv in create gf from argv().

6 THE DEFAULTS 21

6.3 Testing with gf unit and gf time

gf unit andgf time may be used to verify that a combination of arguments works correctly and efficiently on your
platform. If you plan to stray from the defaults, it is probably best to run both tools to ensure there are no issues with
your environment.gf unit will run a set of unit tests based on the arguments provided tothe tool, andgf time will
time Galois Field methods based on the provided arguments.

The usage ofgf unit is:

gf_unit w tests seed [method]

The usage ofgf time is:

gf_time w tests seed buffer-size iterations [method [param s]]

Theseedis an integer — negative one uses the current time. The tests are specified by a listing of characters. The
following tests are supported (all are supported bygf time and ‘A’, ‘S’ and ‘R’ are supported bygf unit):

• ‘M’ : Single multiplications.
• ‘D’ : Single divisions.
• ‘I’ : Single inverses.
• ‘G’ : Region multiplication of a buffer by a random constant.
• ‘0’ : Region multiplication of a buffer by zero (does nothing andbzero()).
• ‘1’ : Region multiplication of a buffer by one (doesmemcpy() and XOR).
• ‘2’ : Region multiplication of a buffer by two – sometimes this isfaster than general multiplication.
• ‘S’ : All three single tests.
• ‘R’ : All four region tests.
• ‘A’ : All seven tests.

For example, suppose you want to explore using the “SPLIT ” technique inGF (232). You rungf methodsand
grep for “w=32 .* SPLIT.” It prints quite a few lines, and fromthem, you decide that you’ll try the following:

w=32: -m SPLIT 32 4 -r NOSSE -d EUCLID -

You should first rungf unit to ensure this set of options works on your environment:

UNIX> gf_unit 32 A -1 -m SPLIT 32 4 -r NOSSE -d EUCLID -
Size (bytes): 684
UNIX>

gf unit first reports on the memory consumption of thegf t. If the field is a composite field, this includes the
memory consumption of the base field(s) (see Section 6.5). Then unit runs all tests for the specified parameters. If
gf unit does not return an error, then you can be confident that there are no environmental correctness issues.

Next, to get an idea of how the methods perform, you should rungf time:

UNIX> gf_time 32 A -1 1024 1024 -m SPLIT 32 4 -r NOSSE -d EUCLID -
Seed: 1375822062

Multiply: 0.013587 s Mops: 0.250 18.400 Mega-ops/s
Divide: 0.293074 s Mops: 0.250 0.853 Mega-ops/s

Inverse: 0.280164 s Mops: 0.250 0.892 Mega-ops/s
Region-Random: XOR: 0 0.002397 s MB: 1.000 417.178 MB/s

6 THE DEFAULTS 22

Region-Random: XOR: 1 0.002379 s MB: 1.000 420.271 MB/s
Region-By-Zero: XOR: 0 0.000053 s MB: 1.000 18978.751 MB/s
Region-By-Zero: XOR: 1 0.000032 s MB: 1.000 31536.120 MB/s

Region-By-One: XOR: 0 0.000068 s MB: 1.000 14614.300 MB/s
Region-By-One: XOR: 1 0.000094 s MB: 1.000 10591.677 MB/s
Region-By-Two: XOR: 0 0.002124 s MB: 1.000 470.741 MB/s
Region-By-Two: XOR: 1 0.002148 s MB: 1.000 465.517 MB/s

UNIX>

The first column of output displays the name of the test performed. Region tests will test with and without the XOR
flag being set (see Section 4.3 for an example). The second column displays the total time the test took to complete
measured in seconds (s). The third column displays the size of the test measured in millions of operations (Mops) for
single tests and in Megabytes (MB) for the region tests. The final column displays the speed of the tests calculated
from the second and third columns, and is where you should look to get an idea of a method’s performance.

If the output ofgf unit andgf time are to your satisfaction, you can incorporate the method into application code
usingcreate gf from argv() or gf init hard().

The performance of “Region-By-Zero” and “Region-By-One” will not change from test to test, as all methods make
the same calls for these. “Region-By-Zero” with “XOR: 1” does nothing except set up the tests. Therefore, you may
use it as a control.

Because this implementation creates the tables lazily, onewould expect the performance ofregion multiply() to
be faster for larger regions, because the cost of creating the tables is amortized. Indeed, that is the case:

UNIX> gf_time 32 G -1 10240 1024 -m SPLIT 32 4 -r NOSSE -d EUCLID -
Seed: 1375822694

Region-Random: XOR: 0 0.021350 s MB: 10.000 468.381 MB/s
Region-Random: XOR: 1 0.021171 s MB: 10.000 472.353 MB/s

UNIX>

6.4 Calling gf init hard()

We recommend that you usecreate gf from argv() instead ofgf init hard(). However, there are extra things that
you can do withgf init hard(). Here’s the prototype:

int gf_init_hard(gf_t * gf,
int w,
int mult_type,
int region_type,
int divide_type,
uint64_t prim_poly,
int arg1,
int arg2,
GFP base_gf,
void * scratch_memory);

The argumentsmult type, region type anddivide type allow for the same specifications as above, except the
types are integer constants defined ingf complete.h:

typedef enum {GF_MULT_DEFAULT,
GF_MULT_SHIFT,

6 THE DEFAULTS 23

GF_MULT_CARRY_FREE,
GF_MULT_GROUP,
GF_MULT_BYTWO_p,
GF_MULT_BYTWO_b,
GF_MULT_TABLE,
GF_MULT_LOG_TABLE,
GF_MULT_LOG_ZERO,
GF_MULT_LOG_ZERO_EXT,
GF_MULT_SPLIT_TABLE,
GF_MULT_COMPOSITE } gf_mult_type_t;

#define GF_REGION_DEFAULT (0x0)
#define GF_REGION_DOUBLE_TABLE (0x1)
#define GF_REGION_QUAD_TABLE (0x2)
#define GF_REGION_LAZY (0x4)
#define GF_REGION_SSE (0x8)
#define GF_REGION_NOSSE (0x10)
#define GF_REGION_ALTMAP (0x20)
#define GF_REGION_CAUCHY (0x40)

typedef enum { GF_DIVIDE_DEFAULT,
GF_DIVIDE_MATRIX,
GF_DIVIDE_EUCLID } gf_division_type_t;

You can mix the region types with bitwise or. The arguments toGF MULT GROUP, GF MULT SPLIT TABLE
andGF MULT COMPOSITE are specified inarg1 andarg2. GF MULT COMPOSITE also takes a base field
in basegf. The base field is itself agf t, which should have been created previously withcreate gf from argv(),
gf init easy()or gf init hard(). Note that thisbasegf has its ownbasegf member and can be a composite field
itself.

You can specify an alternate polynomial inprim poly. Forw ≤ 32, the leftmost one (the one in bit positionw) is
optional. If you omit it, it will be added for you. Forw = 64, there’s no room for that one, so you have to leave it off.
Forw = 128, your polynomial can only use the bottom-most 64 bits. Fortunately, the standard polynomial only uses
those bits. If you setprim poly to zero, the library selects the “standard” polynomial.

Finally,scratch memory is there in case you don’t wantgf init hard() to callmalloc(). You may callgf scratch size()
to find out how much extra memory each technique uses, and thenyou may pass it a pointer for it to use inscratch memory.
If you setscratch memory to NULL , then the extra memory is allocated for you withmalloc(). If you usegf init easy()
or create gf from argv(), or you usegf init hard() and setscratch memory to NULL , then you should callgf free()
to free memory. If you usegf init hard() and use your ownscratch memory you can still callgf free(), and it will
not do anything.

Both gf init hard() andgf scratch size()return zero if the arguments don’t specify a validgf t. When that hap-
pens, you can callgf error() to print why the call failed.

We’ll give you one example of callinggf init hard(). Suppose you want to make agf init hard() call to be
equivalent to “-m SPLIT 16 4 -r SSE -r ALTMAP -” and you want to allocate the scratch space yourself. Then you’d
do the following:

gf_t gf;
void * scratch;
int size;

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 24

size = gf_scratch_size(16, GF_MULT_SPLIT_TABLE,
GF_REGION_SSE | GF_REGION_ALTMAP,
GF_DIVIDE_DEFAULT,
16, 4);

if (size == 0) { gf_error(); exit(1); } / * It failed. That shouldn’t happen * /
scratch = (void *) malloc(size);
if (scratch == NULL) { perror("malloc"); exit(1); }
if (!gf_init_hard(&gf, 16, GF_MULT_SPLIT_TABLE,

GF_REGION_SSE | GF_REGION_ALTMAP,
GF_DIVIDE_DEFAULT,
0, 16, 4, NULL, scratch)) {

gf_error();
exit(1);

}

6.5 gf size()

You can callgf size(gf t *gf) to learn the memory consumption of thegf t. It returns all memory consumed by the
gf t, including thegf t itself, any scratch memory required by thegf t, and the memory consumed by the sub-field if
the field is “COMPOSITE .” If you provided your own memory togf init hard(), it does not report the size of this
memory, but what the size should be, as determined bygf scratch size().

7 Further Information on Options and Algorithms

7.1 Inlining Single Multiplication and Division for Speed

Obviously, procedure calls are more expensive than single instructions, and the mechanics of multiplication in “TA-
BLE ” and “LOG ” are pretty simple. For that reason, we support inlining for“TABLE ” whenw = 4 andw = 8, and
for “LOG ” whenw = 16. We elaborate below.

Whenw = 4, you may inline multiplication and division as follows. Thefollowing procedures return pointers to
the multiplication and division tables respectively:

uint8_t * gf_w4_get_mult_table(gf_t * gf);
uint8_t * gf_w4_get_div_table(gf_t * gf);

The macroGF W4 INLINE MULTDIV (table, a, b) then multiplies or dividesa by b using the giventable. This
of course only works if the multiplication technique is “TABLE ,” which is the default forw = 4. If the multiplication
technique is not “TABLE ,” thengf w4 get mult table() will return NULL .

Whenw = 8, the proceduresgf w8 get mult table() andgf w8 get div table(), and the macro
GF W8 INLINE MULTDIV (table, a, b) work identically to thew = 4 case.

Whenw = 16, the following procedures return pointers to the logarithmtable, and the two inverse logarithm tables
respectively:

uint16_t * gf_w16_get_log_table(gf_t * gf);
uint16_t * gf_w16_get_mult_alog_table(gf_t * gf);
uint16_t * gf_w16_get_div_alog_table(gf_t * gf);

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 25

The first inverse logarithm table works for multiplication,and the second works for division. They actually point
to the same table, but to different places in the table. You may then use the macroGF W16 INLINE MULT (log,
alog, a, b) to multiply a and b, and the macroGF W16 INLINE DIV (log, alog, a, b) to divide a and b. Make
sure you use thealog table returned bygf w16 get mult alog table() for multiplication and the one returned by
gf w16 get div alog table() for division. Here are some timings:

UNIX> gf_time 4 M 0 10240 10240 -
Seed: 0

Multiply: 0.228860 s Mops: 100.000 436.949 Mega-ops/s
UNIX> gf_inline_time 4 0 10240 10240
Seed: 0
Inline mult: 0.096859 s Mops: 100.000 1032.424 Mega-ops/s
UNIX> gf_time 8 M 0 10240 10240 -
Seed: 0

Multiply: 0.228931 s Mops: 100.000 436.812 Mega-ops/s
UNIX> gf_inline_time 8 0 10240 10240
Seed: 0
Inline mult: 0.114300 s Mops: 100.000 874.889 Mega-ops/s
UNIX> gf_time 16 M 0 10240 10240 -
Seed: 0

Multiply: 0.193626 s Mops: 50.000 258.229 Mega-ops/s
UNIX> gf_inline_time 16 0 10240 10240
Seed: 0
Inline mult: 0.310229 s Mops: 100.000 322.342 Mega-ops/s
UNIX>

7.2 Using different techniques for single and region multiplication

You may want to “mix and match” the techniques. For example, suppose you’d like to use “-m SPLIT 8 8” for
multiply() in GF (232), because it’s fast, and you don’t mind consuming all of that space for tables. However, for
multiply region(), you’d like to use “-m SPLIT 32 4 -r ALTMAP,” because that’s the fastest way to implement
multiply region(). Unfortunately, There is no way to create agf t that does this combination. In this case, you should
simply create twogf t’s, and use one formultiply() and the other formultiply region(). All of the implementations
may be used interchangably with the following exceptions:

• “COMPOSITE ” implements a different Galois Field.

• If you change a field’s polynomial, then the resulting GaloisField will be different.

• If you are using “ALTMAP ” to multiply regions, then the contents of the resulting regions of memory will
depend on the multiplication technique, the size of the region and its alignment. Please see section 7.9 for a
detailed explanation of this.

• If you are using “CAUCHY ” to multiply regions, then like “ALTMAP ,” the contents of the result regions of
memory the multiplication technique and the size of the region. You don’t have to worry about alignment.

7.3 Generalw

The library supports Galois Field arithmetic with2 < w ≤ 32. Values ofw which are not whole number powers of
2 are handled by the functions ingf wgen.c. For these values ofw, the available multiplication types are “SHIFT ,”

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 26

“BYTWO p,” “ BYTWO b,” “ GROUP,” “ TABLE ” and “LOG .” “ LOG ” is only valid for w < 28 and “TABLE ”
is only valid forw < 15. The defaults for these values ofw are “TABLE ” for w < 8, “LOG ” for w < 16, and
“BYTWO p” for w < 32.

7.4 Arguments to “SPLIT”

The “SPLIT ” technique is based on the distributive property of multiplication and addition:

a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

This property allows us to, for example, split an eight bit word into two four-bit components and calculate the product
by performing two table lookups in 16-element tables on eachof the compoents, and adding the result. There is much
more information on “SPLIT ” in The Paper. Here we describe the version of “SPLIT ” implemented in GF-Complete.

“SPLIT ” takes two arguments, which are the number of bits in each component ofa, which we callwa, and the
number of bits in each component ofb, which we callwb. If the two differ, it does not matter which is bigger – the
library recognizes this and performs the correct implementation. The legal values ofwa andwb fall into five categories:

1. wa is equal tow andwb is equal to four. In this case,b is broken up intow
4

four-bit words which are used
in 16-element lookup tables. The tables are created on demand in multiply region() and the SSSE3 instruc-
tion mm shuffle epi8() is leveraged to perform 16 lookups in parallel. Thus, these are very fast implementa-
tions. Whenw ≥ 16, you should combine this with “ALTMAP ” to get the best performance (see The Paper
or [PGM13b] for explanation). If you do this please see section 7.9 for information about “ALTMAP ” and
alignment.

If you don’t use “ALTMAP ,” the implementations forw ∈ {16, 32, 64} convert the standard representation into
“ALTMAP ,” perform the multiplication with “ALTMAP ” and then convert back to the standard representation.
Whenw equals 128, “ALTMAP ” is the only option. The performance difference using “ALTMAP ” can be
significant:

gf time 16 G 0 1048576 100 -m SPLIT 16 4 - Speed = 8,389 MB/s
gf time 16 G 0 1048576 100 -m SPLIT 16 4 -r ALTMAP - Speed = 9,212 MB/s
gf time 32 G 0 1048576 100 -m SPLIT 32 4 - Speed = 5,304 MB/s
gf time 32 G 0 1048576 100 -m SPLIT 32 4 -r ALTMAP - Speed = 7,146 MB/s
gf time 64 G 0 1048576 100 -m SPLIT 64 4 - Speed = 2,595 MB/s
gf time 64 G 0 1048576 100 -m SPLIT 64 4 -r ALTMAP - Speed = 3,436 MB/s

2. wa is equal tow andwb is equal to eight. Now,b is broken into bytes, each of these is used in its own 256-element
lookup table. This is typically the best way to performmultiply region() without SSE.

Because this is a region optimization, when you specify these options, you get a defaultmultiply() — see
Table 1 for a listing of the defaults. See section 7.2 for using a differentmultiply() than the defaults.

3. wa is equal tow andwb is equal to 16. This is only valid forw = 32 andw = 64. Now, b is broken into shorts,
each of these is used in its own 64K-element lookup table. This is typically slower than whenwb equals 8, and
requires more amortization (larger buffer sizes) to be effective.

4. wa andwb are both equal to eight. Now botha andb are broken into bytes, and the products of the various bytes
are looked up in multiple256× 256 tables. InGF (216), there are three of these tables. InGF (232), there are

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 27

seven, and inGF (264) there are fifteen. Thus, this implementation can be a space hog. However, forw = 32,
this is the fastest way to performmultiply() on some machines.

When this option is employed,multiply region() is implemented in an identical fashion to whenwa = w

andwb = 8.

5. wa = 32 andwb = 2. (w = 32 only). I was playing with a different way to usemm shuffle epi8(). It works,
but it’s slower than whenwb = 4.

7.5 Arguments to “GROUP”

The “GROUP” multiplication option takes two arguments,gs andgr. It implements multiplication in the same manner
as “SHIFT ,” except it uses a table of size2gs to performgs shifts at a time, and a table of size2gr to performgr
reductions at at time. The programgf methodsonly prints the options 4 4 and 4 8 as arguments for “GROUP.”
However, other values ofgs andgr are legal and sometimes desirable:

• Forw ≤ 32 andw = 64, any values ofgs andgr may be used, so long as they are less than or equal tow and so
long as the tables fit into memory. There are four exceptions to this, listed below.

• Forw = 4, “GROUP” is not supported.

• Forw = 8, “GROUP” is not supported.

• Forw = 16, “GROUP” is only supported forgs = gr = 4.

• Forw = 128 “GROUP” requires SSE, and only supportsgs = 4 andgr ∈ {4, 8, 16}.

The way thatgs andgr impact performance is as follows. The “SHIFT ” implementation works by performing a
carry-free multiplication inw steps, and then performing reduction inw steps. In “GROUP,” the carry-free multipli-
cation is reduced to⌈ w

gs
⌉ steps, and the reduction is reduced to⌈ w

gr
⌉. Both require tables. The table for the carry-free

multiplication must be created at the beginning of eachmultiply() or multiply region(), while the table for reduction
is created when thegf t is initialized. For that reason, it makes sense forgr to be bigger thangs.

To give a flavor for the impact of these arguments, Figure 3 shows the performance of varyinggs and gr for
single multiplication and region multiplication respectively, in GF (232) andGF (264). As the graphs demonstrate,
multiply() performs better with smaller values ofgs, while multiply region() amortizes the creation of the shifting
table, and can tolerate larger values ofgs. Whengs equalsgr, there are some optimizations that we hand-encode.
These can be seen clearly in themultiply region() graphs.

7.6 Considerations with “COMPOSITE”

As mentioned above, using “ALTMAP ” with “ COMPOSITE ” allows multiply region() to recursively callmulti-
ply region(), rather than simply callingmultiply() on every word in the region. The difference can be pronounced:

gf time 32 G 0 10240 10240 -m COMPOSITE 2 - -

Speed = 322 MB/s
gf time 32 G 0 10240 10240 -m COMPOSITE 2 - -r ALTMAP -

Speed = 3,368 MB/s
gf time 32 G 0 10240 10240 -m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAP - -r ALTMAP -

Speed = 3,925 MB/s

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 28

2 3 4 5 6 7 8

g_s

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

g_
r

w = 32

multiply()

Full white is 25.5 Mega-ops / second

2 3 4 5 6 7 8

g_s

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

w = 64

2 3 4 5 6 7 8 9 10111213141516

g_s

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

g_
r

w = 32

multiply_region()

Full white is 720 MB / second

2 3 4 5 6 7 8 9 10111213141516

g_s

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

w = 64

Figure 3: The performance ofmultiply() and multiply region() using “GROUP,” and varying the argumentsgs
andgr. All graphs are heat maps with black equaling zero. The region size is 100KB.

There is support for performingmultiply() inline for the “TABLE ” implementations forw ∈ {4, 8} and for the
“LOG ” implementation forw = 16 (see section 7.1). These are leveraged bymultiply() in “COMPOSITE ,” and
by multiply region() if you are not using “ALTMAP .” To demonstrate this, in the table below, you can see that the
performance ofmultiply() with “SPLIT 8 4” is 88 percent as fast than the default inw = 8 (which is “TABLE ”).
When you use each as a base field for “COMPOSITE ” with w = 16, the one with “SPLIT 8 4” is now just 37 percent
as fast. The difference is the inlining of multiplication inthe base field when “TABLE ” is employed:

gf time 8 M 0 1048576 100 - Speed = 501 Mega-ops/s
gf time 8 M 0 1048576 100 -m SPLIT 8 4 - Speed = 439 Mega-ops/s
gf time 8 M 0 1048576 100 -m COMPOSITE 2 - - Speed = 207 Mega-ops/s
gf time 8 M 0 1048576 100 -m COMPOSITE 2 -m SPLIT 8 4 - - Speed = 77 Mega-ops/s

You can keep making recursive definitions of composites fieldif you want. For example, this one’s not too slow for
region operations (641 MB/s):

gf time 128 G 0 1048576 100 -m COMPOSITE 2 -m COMPOSITE 2-m COMPOSITE 2

-m SPLIT 16 4 -r ALTMAP - -r ALTMAP - -r ALTMAP - -r ALTMAP -

Please see section 7.8.1 for a discussion of polynomials in composite fields.

7.7 “CARRY FREE” and the Primitive Polynomial

If your machine supports the PCLMUL instruction, then we leverage that in “CARRY FREE.” This implementation
first performs a carry free multiplication of twow-bit numbers, which yields a2w-bit number. It does this with
one PCLMUL instruction. To reduce the2w-bit number back to aw-bit number requires some manipulation of the
polynomial. As it turns out, if the polynomial has a lot of contiguous zeroes following its leftmost one, the number of
reduction steps may be minimized. For example, withw = 32, we employ the polynomial 0x100400007, because that

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 29

is what other libraries employ. This only has 9 contiguous zeros following the one, which means that the reduction
takes four steps. If we instead use 0x1000000c5, which has 24contiguous zeros, the reduction takes just two steps.
You can see the difference in performance:

gf time 32 M 0 1048576 100 -m CARRY FREE - Speed = 48 Mega-ops/s
gf time 32 M 0 1048576 100 -m CARRY FREE -p 0xc5 - Speed = 81 Mega-ops/s

This is relevant forw = 16 andw = 32, where the “standard” polynomials are sub-optimal with respect to
“CARRY FREE.” For w = 16, the polynomial 0x1002d has the desired property. It’s lessimportant, of course,
with w = 16, because “LOG ” is so much faster than “CARRY FREE.”

7.8 More on Primitive Polynomials

7.8.1 Primitive Polynomials that are not Primitive

The library is willing to work with most polynomials, even ifthey are not primitive or irreducible. For example, the
polynomialx4 + x3 + x2 + x+1 is irreducible, and therefore generates a valid Galois Field forGF (24). However, it
is not primitive, because25 = 1. For that reason, if you use this polynomial, you cannot use the “LOG ” method. The
other methods will work fine:

UNIX> gf_mult 2 2 4 -p 0xf -
4
UNIX> gf_mult 4 2 4 -p 0xf -
8
UNIX> gf_mult 8 2 4 -p 0xf -
15
UNIX> gf_mult 15 2 4 -p 0xf -
1
UNIX> gf_div 1 15 4 -p 0xf -
2
UNIX> gf_div 1 15 4 -p 0xf -m LOG -
usage: gf_div a b w [method] - does division of a and b in GF(2ˆw)
Bad Method Specification: Cannot use Log tables because the polynomial is not primitive.
UNIX>

If a polynomial is reducible, then it does not define a Galois Field, but instead a ring. GF-Complete attempts to
work here where it can; however certain parts of the library will not work:

1. Division is a best effort service. The problem is that often quotients are not unique. Ifdivide() returns a non-zero
number, then that number will be a valid quotient, but it may be one of many. If the multiplication technique is
“TABLE ,” then if a quotient exists, one is returned. Otherwise, zero is returned. Here are some examples – the
polynomialx4 + 1 is reducible, and therefore produces a ring. Below, we see that with this polynomal, 1*6 = 6
and 14*6 = 6. Therefore,6

6
has two valid quotients: 1 and 14. GF-Complete returns 14 as the quotient:

UNIX> gf_mult 1 6 4 -p 0x1 -
6
UNIX> gf_mult 14 6 4 -p 0x1 -
6
UNIX> gf_div 6 6 4 -p 0x1 -

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 30

14
UNIX>

2. When “EUCLID ” is employed for division, it uses the extended Euclidean algorithm for GCD to find a number’s
inverse, and then it multiplies by the inverse. The problem is that not all numbers in a ring have inverses. For
example, in the above ring, there is no numbera such that6a = 1. Thus, 6 has no inverse. This means that even
though6

6
has quotients in this ring, “EUCLID ” will fail on it because it is unable to find the inverse of 6. Itwill

return 0:

UNIX> gf_div 6 6 4 -p 0x1 -m TABLE -d EUCLID -
0
UNIX>

3. Inverses only work if a number has an inverse. Inverses maynot be unique.

4. “LOG ” will not work. In cases where the default would be “LOG ,” “ SHIFT ” is used instead.

Due to problems with division,gf unit may fail on a reducible polynomial. If you are determined to use such a
polynomial, don’t let this error discourage you.

7.8.2 Default Polynomials for Composite Fields

GF-Complete will successfully select a default polynomialin the following composite fields:

• w = 8 and the default polynomial (0x13) is employed forGF (24).

• w = 16 and the default polynomial (0x11d) is employed forGF (28).

• w = 32 and the default polynomial (0x1100b) is employed forGF (216).

• w = 32 and 0x1002d is employed forGF (216).

• w = 32 and the base field forGF (w16) is a composite field that uses a default polynomial.

• w = 64 and the default polynomial (0x100400007) is employed forGF (232).

• w = 64 and 0x1000000c5 is employed forGF (232).

• w = 64 and the base field forGF (w32) is a composite field that uses a default polynomial.

• w = 128 and the default polynomial (0x1b) is employed forGF (264).

• w = 128 and the base field forGF (w64) is a composite field that uses a default polynomial.

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 31

7.8.3 The Program gfpoly for Verifying Irreducibility of Polynomials

The programgf poly uses the Ben-Or algorithm [GP97] to determine whether a polynomial with coefficients inGF (2w)
is reducible. Its syntax is:

gf_poly w method power:coef power:coef ...

You can use it to test for irreducible polynomials with binary coefficients by specifyingw = 1. For example, from
the discussion above, we know thatx4 + x+1 andx4 + x3 + x2 + x+1 are both irreducible, butx4 +1 is reducible.
gf poly confirms:

UNIX> gf_poly 1 - 4:1 1:1 0:1
Poly: xˆ4 + x + 1
Irreducible.
UNIX> gf_poly 1 - 4:1 3:1 2:1 1:1 0:1
Poly: xˆ4 + xˆ3 + xˆ2 + x + 1
Irreducible.
UNIX> gf_poly 1 - 4:1 0:1
Poly: xˆ4 + 1
Reducible.
UNIX>

For composite fieldsGF ((2l)2), we are looking for a values such thatx2 + sx + 1 is irreducible. That value
depends on the base field. For example, for the default fieldGF (232), a value ofs = 2 makes the polynomial
irreducible. However, if the polynomial 0xc5 is used (so that PCLMUL is fast – see section 7.7), thens = 2 yields a
reducible polynomial, buts = 3 yields an irreducible one. You can usegf poly to help verify these things, and to help
defines if you need to stray from the defaults:

UNIX> gf_poly 32 - 2:1 1:2 0:1
Poly: xˆ2 + (0x2)x + 1
Irreducible.
UNIX> gf_poly 32 -p 0xc5 - 2:1 1:2 0:1
Poly: xˆ2 + (0x2)x + 1
Reducible.
UNIX> gf_poly 32 -p 0xc5 - 2:1 1:3 0:1
Poly: xˆ2 + (0x3)x + 1
Irreducible.
UNIX>

gf unit does random sampling to test for problems. In particular, itchooses a randoma and a randomb, multiplies
them, and then tests the result by dividing it bya and b. Whenw is large, this sampling does not come close to
providing complete coverage to check for problems. In particular, if the polynomial is reducible, there is a good
chance thatgf unit won’t discover any problems. For example, the followinggf unit call does not flag any problems,
even though the polynomial is reducible.

UNIX> gf_unit 64 A 0 -m COMPOSITE 2 -p 0xc5 - -p 2 -
UNIX>

How can we demonstrate that this particular field has a problem? Well, when the polynomial is 0xc5, we can factor
x2 + 2x + 1 as(x + 0x7f6f95f9)(x + 0x7f6f95fb). Thus, in the composite field, when we multiply 0x17f6f95f9 by
0x17f6f95fb, we get zero. That’s the problem:

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 32

UNIX> gf_mult 7f6f95f9 7f6f95fb 32h -p 0xc5 -
1
UNIX> gf_mult 17f6f95f9 17f6f95fb 64h -m COMPOSITE 2 -p 0xc5 - -p 2 -
0
UNIX>

7.9 “ALTMAP” considerations and extract word()

There are two times when you may employ alternate memory mappings:

1. When using “SPLIT ” andwb = 4.

2. When using “COMPOSITE .”

Additionally, by default, the “CAUCHY ” region option also employs an alternate memory mapping.
When you use alternate memory mappings, the exact mapping ofwords inGF (2w) to memory depends on the

situation, the size of the region, and the alignment of the pointers. To help you figure things out, we have included the
proceduresextract word.wxx() as part of thegf t struct. This procedure takes four parameters:

• A pointer to thegf t.

• The beginning of the memory region.

• The number of bytes in the memory region.

• The desired word number:n.

It then returns then-th word in memory. When the standard mapping is employed, this simply returns then-
th contiguous word in memory. With alternate mappings, eachword may be split over several memory regions, so
extract word() grabs the relevant parts of each memory region to extract theword. Below, we go over each of the
above situations in detail. Please refer to Figure 2 in Section 5 for reference.

7.9.1 Alternate mappings with “SPLIT”

The alternate mapping with “SPLIT ” is employed so that we can best leveragemm shuffle epi8(). Please read [PGM13b]
for details as to why. Consider an example whenw = 16. In the main region of memory (the middle region in Fig-
ure 2), multiplication proceeds in units of 32 bytes, which are each broken into two 16-byte regions. The first region
holds the high bytes of each word inGF (216), and the second region holds the low bytes.

Let’s look at a very detailed example, fromgf example5.c. This program makes the following call, wheregf has
been initialized forw = 16, using “SPLIT ” and “ALTMAP :”

gf.multiply_region.w32(&gf, a, b, 0x1234, 30 * 2, 0);

In other words, it is multiplying a regiona of 60 bytes (30 words) by the constant 0x1234 inGF (216), and placing
the result intob. The pointersa andb have been set up so that they are not multiples of 16. The first line of output
printsa andb:

a: 0x10010008c b: 0x10010015c

As described in Section 5, the regions of memory are split into three parts:

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 33

1. 4 bytes starting at 0x1001008c / 0x10010015c.

2. 32 bytes starting at 0x10010090 / 0x100100160.

3. 24 bytes starting at 0x100100b0 / 0x100100180.

In the first and third parts, the bytes are laid out according to the standard mapping. However, the second part is
split into two 16-byte regions — one that holds the high bytesof each word and one that holds the low bytes. To help
illustrate, the remainder of the output prints the 30 words of a andb as they appear in memory, and then the 30 return
values ofextract word.w32():

0 1 2 3 4 5 6 7 8 9
a: 640b 07e5 2fba ce5d f1f9 3ab8 c518 1d97 45a7 0160
b: 1ba3 644e 84f8 be3c 4318 4905 b2fb 46eb ef01 a503

10 11 12 13 14 15 16 17 18 19
a: 3759 b107 9660 3fde b3ea 8a53 75ff 46dc c504 72c2
b: da27 e166 a0d2 b3a2 1699 3a3e 47fb 39af 1314 8e76

20 21 22 23 24 25 26 27 28 29
a: b469 1b97 e91d 1dbc 131e 47e0 c11a 7f07 76e0 fe86
b: 937c a5db 01b7 7f5f 8974 05e1 cff3 a09c de3c 4ac0

Word 0: 0x640b * 0x1234 = 0x1ba3 Word 15: 0x4575 * 0x1234 = 0xef47
Word 1: 0x07e5 * 0x1234 = 0x644e Word 16: 0x60dc * 0x1234 = 0x03af
Word 2: 0xba59 * 0x1234 = 0xf827 Word 17: 0x0146 * 0x1234 = 0xa539
Word 3: 0x2f37 * 0x1234 = 0x84da Word 18: 0xc504 * 0x1234 = 0x1314
Word 4: 0x5d07 * 0x1234 = 0x3c66 Word 19: 0x72c2 * 0x1234 = 0x8e76
Word 5: 0xceb1 * 0x1234 = 0xbee1 Word 20: 0xb469 * 0x1234 = 0x937c
Word 6: 0xf960 * 0x1234 = 0x18d2 Word 21: 0x1b97 * 0x1234 = 0xa5db
Word 7: 0xf196 * 0x1234 = 0x43a0 Word 22: 0xe91d * 0x1234 = 0x01b7
Word 8: 0xb8de * 0x1234 = 0x05a2 Word 23: 0x1dbc * 0x1234 = 0x7f5f
Word 9: 0x3a3f * 0x1234 = 0x49b3 Word 24: 0x131e * 0x1234 = 0x8974
Word 10: 0x18ea * 0x1234 = 0xfb99 Word 25: 0x47e0 * 0x1234 = 0x05e1
Word 11: 0xc5b3 * 0x1234 = 0xb216 Word 26: 0xc11a * 0x1234 = 0xcff3
Word 12: 0x9753 * 0x1234 = 0xeb3e Word 27: 0x7f07 * 0x1234 = 0xa09c
Word 13: 0x1d8a * 0x1234 = 0x463a Word 28: 0x76e0 * 0x1234 = 0xde3c
Word 14: 0xa7ff * 0x1234 = 0x01fb Word 29: 0xfe86 * 0x1234 = 0x4ac0

In the first region are words 0 and 1, which are identical to howthey appear in memory: 0x640b and 0x07e5. In
the second region are words 2 through 17. These words are split among the two sixteen-byte regions. For example,
word 2, whichextract word() reports is 0xba59, is constructed from the low byte in word 2 (0xba) and the low byte
in word 10 (0x59). Since 0xba59 * 0x1234 = 0xf827, we see that the low byte in word 2 ofb is 0xf8, and the low byte
in word 10 is 0x27.

When we reach word 22, we are in the third region of memory, andwords are once again identical to how they
appear in memory.

While this is confusing, we stress that that so long as you call multiply region() with pointers of the same align-
ment and regions of the same size, your results withALTMAP will be consistent. If you call it with pointers of

7 FURTHER INFORMATION ON OPTIONS AND ALGORITHMS 34

different alignments, or with different region sizes, thenthe results will not be consistent. To reiterate, if you don’t use
ALTMAP , you don’t have to worry about any of this – words will always be laid out contiguously in memory.

Whenw = 32, the middle region is a multiple of 64, and each word in the middle region is broken into bytes, each
of which is in a different 16-byte region. Whenw = 64, the middle region is a multiple of 128, and each word is
stored in eight 16-byte regions. And finally, whenw = 128, the middle region is a multiple of 128, and each word is
stored in 16 16-byte regions.

7.9.2 Alternate mappings with “COMPOSITE”

With “COMPOSITE ,” the alternate mapping divides the middle region in half. The lower half of each word is stored
in the first half of the middle region, and the higher half is stored in the second half. To illustrate,gf example6
performs the same example asgf example5, except it is using “COMPOSITE ” in GF ((216)2), and it is multiplying
a region of 120 bytes rather than 60. As before, the pointers are not aligned on 16-bit quantities, so the region is broken
into three regions of 4 bytes, 96 bytes, and 20 bytes. In the first and third region, each consecutive four byte word is a
word inGF (232). For example, word 0 is 0x562c640b, and word 25 is 0x46bc47e0. In the middle region, the low two
bytes of each word come from the first half, and the high two bytes come from the second half. For example, word 1
as reported byextract word() is composed of the lower two bytes of word 1 of memory (0x07e5), and the lower two
bytes of word 13 (0x3fde). The product of 0x3fde07e5 and 0x12345678 is 0x211c880d, which is stored in the lower
two bytes of words 1 and 13 ofb.

a: 0x10010011c b: 0x1001001ec

0 1 2 3 4 5 6 7 8 9
a: 562c640b 959407e5 56592fba cbadce5d 1d1cf1f9 35d73ab8 6 493c518 b37c1d97 8e4545a7 c0d80160
b: f589f36c f146880d 74f7b349 7ea7c5c6 34827c1a 93cc3746 b fd9288b 763941d1 bcd33a5d da695e64

10 11 12 13 14 15 16 17 18 19
a: 965b3759 cb3eb107 1b129660 95a33fde 95a7b3ea d16c8a53 1 53375ff f74646dc 35aac504 98f972c2
b: fd70f125 3274fa8f d9dd34ee c01a211c d4402403 8b55c08b d a45f0ad 90992e18 b65e0902 d91069b5

20 21 22 23 24 25 26 27 28 29
a: 5509b469 7f8a1b97 3472e91d 9ee71dbc de4e131e 46bc47e0 5 bc9c11a 931d7f07 d40676e0 c85cfe86
b: fc92b8f5 edd59668 b4bc0d90 a679e4ce 1a98f7d0 6038765f b 2ff333f e7937e49 fa5a5867 79c00ea2

Word 0: 0x562c640b * 0x12345678 = 0xf589f36c Word 15: 0xb46945a7 * 0x12345678 = 0xb8f53a5d
Word 1: 0x3fde07e5 * 0x12345678 = 0x211c880d Word 16: 0x55098e45 * 0x12345678 = 0xfc92bcd3
Word 2: 0x95a39594 * 0x12345678 = 0xc01af146 Word 17: 0x1b970160 * 0x12345678 = 0x96685e64
Word 3: 0xb3ea2fba * 0x12345678 = 0x2403b349 Word 18: 0x7f8ac0d8 * 0x12345678 = 0xedd5da69
Word 4: 0x95a75659 * 0x12345678 = 0xd44074f7 Word 19: 0xe91d3759 * 0x12345678 = 0x0d90f125
Word 5: 0x8a53ce5d * 0x12345678 = 0xc08bc5c6 Word 20: 0x3472965b * 0x12345678 = 0xb4bcfd70
Word 6: 0xd16ccbad * 0x12345678 = 0x8b557ea7 Word 21: 0x1dbcb107 * 0x12345678 = 0xe4cefa8f
Word 7: 0x75fff1f9 * 0x12345678 = 0xf0ad7c1a Word 22: 0x9ee7cb3e * 0x12345678 = 0xa6793274
Word 8: 0x15331d1c * 0x12345678 = 0xda453482 Word 23: 0x131e9660 * 0x12345678 = 0xf7d034ee
Word 9: 0x46dc3ab8 * 0x12345678 = 0x2e183746 Word 24: 0xde4e1b12 * 0x12345678 = 0x1a98d9dd
Word 10: 0xf74635d7 * 0x12345678 = 0x909993cc Word 25: 0x46bc47e0 * 0x12345678 = 0x6038765f
Word 11: 0xc504c518 * 0x12345678 = 0x0902288b Word 26: 0x5bc9c11a * 0x12345678 = 0xb2ff333f
Word 12: 0x35aa6493 * 0x12345678 = 0xb65ebfd9 Word 27: 0x931d7f07 * 0x12345678 = 0xe7937e49

8 THREAD SAFETY 35

Word 13: 0x72c21d97 * 0x12345678 = 0x69b541d1 Word 28: 0xd40676e0 * 0x12345678 = 0xfa5a5867
Word 14: 0x98f9b37c * 0x12345678 = 0xd9107639 Word 29: 0xc85cfe86 * 0x12345678 = 0x79c00ea2

As with “SPLIT ,” using multiply region() with “COMPOSITE ” and “ALTMAP ” will be consistent only if the
alignment of pointers and region sizes are identical.

7.9.3 The mapping of “CAUCHY”

With “CAUCHY ,” the region is partitioned intow subregions, and each word in the region is broken intow bits,
each of which is stored in a different subregion. To illustrate, gf example7 multiplies a region of three bytes by 5
in GF (23) using “CAUCHY :”

UNIX> gf_example_7
a: 0x100100190 b: 0x1001001a0

a: 0x0b 0xe5 0xba
b: 0xee 0xba 0x0b

a bits: 00001011 11100101 10111010
b bits: 11101110 10111010 00001011

Word 0: 3 * 5 = 4
Word 1: 5 * 5 = 7
Word 2: 2 * 5 = 1
Word 3: 5 * 5 = 7
Word 4: 4 * 5 = 2
Word 5: 6 * 5 = 3
Word 6: 2 * 5 = 1
Word 7: 6 * 5 = 3
UNIX>

The program prints the three bytes ofa andb in hexadecimal and in binary. To see how words are broken up,
consider word 0, which is the lowest bit of each of the three bytes ofa (andb). These are the bits 1, 1 and 0 ina, and
0, 0, and 1 inb. Accordingly, the word is 3 ina, and 3*5 = 4 inb. Similarly, word 7 is the high bit in each byte: 0, 1, 1
(6) in a, and 1, 1, 0 (3) inb.

With “CAUCHY ,” multiply region()may be implemented exclusively with XOR operations. Pleasesee [BKK+95]
for more information on the motivation behind “CAUCHY .”

8 Thread Safety

Once you initialize agf t, you may use it wontonly in multiple threads for all operations except for the ones below.
With the implementations listed below, the scratch space inthegf t is used for temporary tables, and therefore you
cannot callregion multiply , and in some casesmultiply from multiple threads because they will overwrite each
others’ tables. In these cases, if you want to call the procedures from multiple threads, you should allocate a separate
gf t for each thread:

• All “ GROUP” implementations are not thread safe for eitherregion multiply() or multiply() . Other than
“GROUP,” multiply() is always thread-safe.

9 LISTING OF PROCEDURES 36

• Forw = 4, region multiply.w32() is unsafe in in “-m TABLE -r QUAD -r LAZY.”

• Forw = 8, region multiply.w32() is unsafe in in “-m TABLE -r DOUBLE -r LAZY.”

• Forw = 16, region multiply.w32() is unsafe in in “-m TABLE.”

• Forw ∈ {32, 64, 128}, all “SPLIT ” implementations are unsafe forregion multiply() . This means that if the
default uses “SPLIT ” (see Table 1 for when that occurs), thenregion multiply() is not thread safe.

• The “COMPOSITE ” operations are only safe if the implementations of the underlying fields are safe.

9 Listing of Procedures

The following is an alphabetical listing of the procedures,data types and global variables for users to employ in
GF-complete.

• GF W16 INLINE DIV() in gf complete.h: This is a macro for inline division whenw = 16. See section 7.1.

• GF W16 INLINE MULT() in gf complete.h: This is a macro for inline multiplication whenw = 16. See
section 7.1.

• GF W4 INLINE MULTDIV() in gf complete.h: This is a macro for inline multiplication/division whenw =
4. See section 7.1.

• GF W8 INLINE MULTDIV() in gf complete.h: This is a macro for inline multiplication/division whenw =
8. See section 7.1.

• MOA Fill Random Region()in gf rand.h: Fills a region with random numbers.

• MOA Random 128()in gf rand.h: Creates a random 128-bit number.

• MOA Random 32() in gf rand.h: Creates a random 32-bit number.

• MOA Random 64() in gf rand.h: Creates a random 64-bit number.

• MOA Random W() in gf rand.h: Creates a randomw-bit number, wherew ≤ 32.

• MOA Seed()in gf rand.h: Sets the seed for the random number generator.

• gf errno in gf complete.h: This is to help figure out why an initialization call failed.See section 6.1.

• gf create gf from argv() in gf method.h: Creates agf t using C style argc/argv. See section 6.1.1.

• gf division type t in gf complete.h: the different ways to specify division when usinggf init hard(). See
section 6.4.

• gf error() in gf complete.h: This prints out why an initialization call failed. See section 6.1.

• gf extract in gf complete.h: This is the data type ofextract word() in a gf t. See section 7.9 for an example
of how to useextract word().

9 LISTING OF PROCEDURES 37

• gf free() in gf complete.h: If gf init easy(), gf init hard() or create gf from argv() allocated memory, this
frees it. See section 6.4.

• gf func a b in gf complete.h: This is the data type ofmultiply() anddivide() in a gf t. See section 4.2 for
examples of how to usemultiply() anddivide().

• gf func a b in gf complete.h: This is the data type ofmultiply() anddivide() in a gf t. See section 4.2 for
examples of how to usemultiply() anddivide().

• gf func a in gf complete.h: This is the data type ofinverse() in a gf t.

• gf general add() in gf general.h: This adds twogf general t’s.

• gf general divide() in gf general.h: This divides twogf general t’s.

• gf general do region check() in gf general.h: This checks a region multiply ofgf general t’s.

• gf general do region multiply() in gf general.h: This does a region multiply ofgf general t’s.

• gf general do single timing test() in gf general.h: Used ingf time.c.

• gf general inverse() in gf general.h: This takes the inverse of agf general t.

• gf general is one()in gf general.h: This tests whether agf general t is one.

• gf general is two() in gf general.h: This tests whether agf general t is two.

• gf general is zero() in gf general.h: This tests whether agf general t is zero.

• gf general multiply() in gf general.h: This multiplies twogf general t’s. See the implementation ofgf mult.c
for an example.

• gf general s to val() in gf general.h: This converts a string to agf general t. See the implementation of
gf mult.c for an example.

• gf general set one() in gf general.h: This sets agf general t to one.

• gf general set random() in gf general.h: This sets agf general t to a random number.

• gf general set two() in gf general.h: This sets agf general t to two.

• gf general set up single timing test() in gf general.h: Used ingf time.c.

• gf general set zero() in gf general.h: This sets agf general t to zero.

• gf general t in gf general.h: This is a general data type for all values ofw. See the implementation ofgf mult.c
for examples of using these.

• gf general val to s() in gf general.h: This converts agf general t to a string. See the implementation of
gf mult.c for an example.

• gf init easy()in gf complete.h: This is how you initialize a defaultgf t. See 4.2 through 4.5 for examples of
callinggf init easy().

9 LISTING OF PROCEDURES 38

• gf init hard() in gf complete.h: This allows you to initialize agf t without using the defaults. See 6.4. We
recommend callingcreate gf from argv() when you can, instead ofgf init hard().

• gf mult type t in gf complete.h: the different ways to specify multiplication when usinggf init hard(). See
section 6.4.

• gf region type t in gf complete.h: the different ways to specify region multiplication when usinggf init hard().
See section 6.4.

• gf region in gf complete.h: This is the data type ofmultiply region() in agf t. See section 4.3 for an example
of how to usemultiply region().

• gf scratch size()in gf complete.h: This is how you calculate how much memory agf t needs. See section 6.4.

• gf size()in (gf complete.h: Returns the memory consumption of agf t. See section 6.5.

• gf val 128 t in gf complete.h: This is how you store a value wherew ≤ 128. It is a pointer to two 64-bit
unsigned integers. See section 4.4.

• gf val 32 t in gf complete.h: This is how you store a value wherew ≤ 32. It is equivalent to a 32-bit unsigned
integer. See section 4.2.

• gf val 64 t in gf complete.h: This is how you store a value wherew ≤ 64. It is equivalent to a 64-bit unsigned
integer. See section 4.5.

• gf w16 get div alog table() in gf complete.h: This returns a pointer to an inverse logarithm table that can be
used for inlining division whenw = 16. See section 7.1.

• gf w16 get log table() in gf complete.h: This returns a pointer to a logarithm table that can be used for inlining
whenw = 16. See section 7.1.

• gf w16 get mult alog table() in gf complete.h: This returns a pointer to an inverse logarithm table that can be
used for inlining multiplication whenw = 16. See section 7.1.

• gf w4 get div table() in gf complete.h: This returns a pointer to a division table that can be used for inlining
whenw = 4. See section 7.1.

• gf w4 get mult table() in gf complete.h: This returns a pointer to a multiplication table that can beused for
inlining whenw = 4. See section 7.1.

• gf w8 get div table() in gf complete.h: This returns a pointer to a division table that can be used for inlining
whenw = 8. See section 7.1.

• gf w8 get mult table() in gf complete.h: This returns a pointer to a multiplication table that can beused for
inlining whenw = 8. See section 7.1.

10 TROUBLESHOOTING 39

10 Troubleshooting

• SSE support.Leveraging SSE instructions requires processor support aswell as compiler support. For exam-
ple, the Mac OS 10.8.4 (and possibly earlier versions) default compile environment fails to properly compile
PCLMUL instructions. This issue can be fixed by installing analternative compiler; see Section 3 for details.

• Initialization segfaults. You have to already have allocated yourgf t before you pass a pointer to it in
gf init easy(), create gf from argv(), or gf init hard().

• GF-Complete is slower than it should be.Perhaps your machine has SSE, but you haven’t specified the SSE
compilation flags. See section 3 for how to compile using the proper flags.

• Bad alignment. If you get alignment errors, see Section 5.

• Mutually exclusive region types.Some combinations of region types are invalid. All valid andimplemented
combinations are printed bygf methods.c.

• Incompatible division types. Some choices of multiplication type constrain choice of divide type. For ex-
ample, “COMPOSITE ” methods only allow the default division type, which divides by finding inverses (i.e.,
neither “EUCLID ” nor “MATRIX ” are allowed). For each multiplication method printed bygf methods.c, the
corresponding valid division types are also printed.

• Arbitrary “GROUP” arguments. The legal arguments to “GROUP” are specified in section 7.5.

• Arbitrary “SPLIT” arguments. The legal arguments to “SPLIT ” are specified in section 7.4.

• Threading problems. For threading questions, see Section 8.

• No default polynomial. If you change the polynomial in a base field using “COMPOSITE ,” then unless it is
a special case for which GF-Complete finds a default polynomial, you’ll need to specify the polynomial of the
composite field too. See 7.8.2 for the fields where GF-Complete will support default polynomials.

• Encoding/decoding with different fields. Certain fields are not compatible. Please see section 7.2 foran
explanation.

• “ALTMAP” is confusing. We agree. Please see section 7.9 for more explanation.

• I used “ALTMAP” and it doesn’t appear to be functioning corre ctly. With 7.9, the size of the region and
its alignment both matter in terms of how “ALTMAP ” performsmultiply region(). Please see section 7.9 for
detailed explanation.

• Where are the erasure codes?.This library only implements Galois Field arithmetic, which is an underlying
component for erasure coding. Jerasure will eventually be ported to this library, so that you can have fast erasure
coding.

11 Timings

We don’t want to get too detailed with timing, because it is quite machine specific. However, here are the timings on
an Intel Core i7-3770 CPU running at 3.40 GHz, with 4× 256 KB L2 caches and an 8MB L3 cache. All timings are
obtained withgf time or gf inline time, in user mode with the machine dedicated solely to running these jobs.

11 TIMINGS 40

0 100 200 300 400 500 600 700 800 900 1000

Speed (Mega-ops / s)

-m BYTWO_b -
-m BYTWO_p -

-m SHIFT -
-m CARRY_FREE -

-m GROUP 4 4 -
-m CARRY_FREE -p 0x1002d -

-m SPLIT 8 8 -
-m COMPOSITE 2 - -

-m LOG_ZERO -
-m SPLIT 16 4 -

-m LOG -
-m LOG-INLINE -

w = 16

0 100 200 300 400 500 600 700 800 900 1000

-m BYTWO_b -
-m CARRY_FREE -

-m BYTWO_p -
-m SHIFT -

-m COMPOSITE 2 - -
-m LOG -

-m LOG_ZERO -
-m SPLIT 8 4 -

-m LOG_ZERO_EXT -
-m TABLE -

-m TABLE-INLINE -

w = 8

0 100 200 300 400 500 600 700 800 900 1000

-m BYTWO_b -
-m CARRY_FREE -

-m BYTWO_p -
-m SHIFT -

-m LOG -
-m TABLE -

-m TABLE-INLINE -

w = 4

Figure 4: Speed of doing single multiplications forw ∈ {4, 8, 16}.

11.1 Multiply()

The performance ofmultiply() is displayed in Figures 4 forw ∈ {4, 8, 16} and 5 forw ∈ {32, 64, 128}. These
numbers were obtained by callinggf time with the size and iterations both set to 10240. We plot the speed in mega-
ops per second.

As would be anticipated, the inlined operations (see section 7.1) outperform the others. Additionally, in all
cases with the exception ofw = 32, the defaults are the fastest performing implementations.With w = 32,
“CARRY FREE” is the fastest with an alternate polynomial (see section 7.7). Because we require the defaults to
use a “standard” polynomial, we cannot use this implementation as the default.

11.2 Divide()

For the “TABLE ” and “LOG ” implementations, the performance of division is the same as multiplication. This means
that forw ∈ {4, 8, 16}, it is very fast indeed. For the other implementations, division is implemented with Euclid’s
method, and is several factors slower than multiplication.

In Figure 6, we plot the speed of a few implementations of the larger word sizes. Compared to the “TABLE ” and
“LOG ” implemenations for the smaller word sizes, where the speeds are in the hundreds of mega-ops per second,
these are very slow. Of note is the “COMPOSITE ” implementation forw = 32, which is much faster than the others

11 TIMINGS 41

0 100 200 300 400 500 600 700 800 900 1000

Speed (Mega-ops / s)

-m SHIFT -
-m BYTWO_b -
-m BYTWO_p -
-m GROUP 4 4 -
-m GROUP 4 8 -

-m COMPOSITE 2 - -
-m CARRY_FREE -

w = 128

0 100 200 300 400 500 600 700 800 900 1000

-m SHIFT -
-m BYTWO_b -
-m SPLIT 8 8 -

-m COMPOSITE 2 - -
-m BYTWO_p -
-m GROUP 4 8 -
-m GROUP 4 4 -

-m CARRY_FREE -

w = 64

0 100 200 300 400 500 600 700 800 900 1000

-m BYTWO_b -
-m SHIFT -

-m GROUP 4 4 -
-m BYTWO_p -
-m GROUP 4 8 -

-m GROUP 4 16 -
-m GROUP 3 16 -

-m CARRY_FREE -
-m SPLIT 8 8 -

-m COMPOSITE 2 - -
-m CARRY_FREE -p 0xc5 -

w = 32

Figure 5: Speed of doing single multiplications forw ∈ {32, 64, 128}.

because it uses a special application of Euclid’s method, which relies on division inGF (216), which is very fast.

11.3 Multiply Region()

Tables 3 through 8 show the performance of the various regionoperations. It should be noted that forGF (216)
throughGF (2128), the default isnot the fastest implementation ofmultiply region(). The reasons for this are outlined
in section 6.

For these tables, we performed 1GB worth ofmultiply region() calls for all regions of size2i bytes for10 ≤ i ≤
30. In the table, we plot the fastest speed obtained.

We note that the performance of “CAUCHY ” can be improved with techniques from [LSXP13] and [PSR12].

REFERENCES 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Speed (Mega-ops / s)

Default w = 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Default
-m COMPOSITE 2 - -

-m COMPOSITE 2 -m COMPOSITE 2 - - - w = 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Default
-m CARRY_FREE -p 0xc5 -

-m COMPOSITE 2 - - w = 32

Figure 6: Speed of doing single divisions forw ∈ {32, 64, 128}.

Method Speed (MB/s)
-m TABLE (Default) - 11879.909
-m TABLE -r CAUCHY - 9079.712
-m BYTWO b - 5242.400
-m BYTWO p - 4078.431
-m BYTWO b -r NOSSE - 3799.699
-m TABLE -r QUAD - 3014.315
-m TABLE -r DOUBLE - 2253.627
-m BYTWO p -r NOSSE - 2021.237
-m TABLE -r NOSSE - 1061.497
-m LOG - 503.310
-m SHIFT - 157.749
-m CARRY FREE - 86.202

Table 3: Speed of various calls tomultiply region() for w = 4.

References

[Anv09] H. P. Anvin. The mathematics of RAID-6.http://kernel.org/pub/linux/kernel/people/hpa/

raid6.pdf , 2009.

[BKK +95] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, andD. Zuckerman. An XOR-based erasure-
resilient coding scheme. Technical Report TR-95-048, International Computer Science Institute, August
1995.

[GMS08] K. Greenan, E. Miller, and T. J. Schwartz. Optimizing Galois Field arithmetic for diverse processor
architectures and applications. InMASCOTS 2008: 16th IEEE Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, Baltimore, MD, September 2008.

[GP97] S. Gao and D. Panario. Tests and constructions of irreducible polynomials over finite fields. InFounda-
tions of Computational Mathematics, pages 346–361. Springer Verlag, 1997.

REFERENCES 43

Method Speed (MB/s)
-m SPLIT 8 4 (Default) - 13279.146
-m COMPOSITE 2 - -r ALTMAP - 5516.588
-m TABLE -r CAUCHY - 4968.721
-m BYTWO b - 2656.463
-m TABLE -r DOUBLE - 2561.225
-m TABLE - 1408.577
-m BYTWO b -r NOSSE - 1382.409
-m BYTWO p - 1376.661
-m LOG ZERO EXT - 1175.739
-m LOG ZERO - 1174.694
-m LOG - 997.838
-m SPLIT 8 4 -r NOSSE - 885.897
-m BYTWO p -r NOSSE - 589.520
-m COMPOSITE 2 - - 327.039
-m SHIFT - 106.115
-m CARRY FREE - 104.299

Table 4: Speed of various calls tomultiply region() for w = 8.

[LBOX12] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient software implementations of large finite fields
GF (2n) for secure storage applications.ACM Transactions on Storage, 8(2), February 2012.

[LD00] J. Lopez and R. Dahab. High-speed software multiplication inf2m . In Annual International Conference
on Cryptology in India, 2000.

[LHy08] H. Li and Q. Huan-yan. Parallelized network coding with SIMD instruction sets. InInternational Sympo-
sium on Computer Science and Computational Technology, pages 364–369. IEEE, December 2008.

[LSXP13] J. Luo, M. Shrestha, L. Xu, and J. S. Plank. Efficientencoding schedules for XOR-based erasure codes.
IEEE Transactions on Computing, May 2013.

[Mar94] G. Marsaglia. The mother of all random generators.ftp://ftp.taygeta.com/pub/c/mother.
c , October 1994.

[PGM13a] J. S. Plank, K. M. Greenan, and E. L. Miller. A complete treatment of software implementations of
finite field arithmetic for erasure coding applications. Technical Report UT-CS-13-717, University of
Tennessee, September 2013.

[PGM13b] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois Field arithmetic using Intel SIMD
instructions. InFAST-2013: 11th Usenix Conference on File and Storage Technologies, San Jose, February
2013.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems.Software –
Practice & Experience, 27(9):995–1012, September 1997.

REFERENCES 44

Method Speed (MB/s)
-m SPLIT 16 4 -r ALTMAP - 10460.834
-m SPLIT 16 4 -r SSE (Default) - 8473.793
-m COMPOSITE 2 - -r ALTMAP - 5215.073
-m LOG -r CAUCHY - 2428.824
-m TABLE - 2319.129
-m SPLIT 16 8 - 2164.111
-m SPLIT 8 8 - 2163.993
-m SPLIT 16 4 -r NOSSE - 1148.810
-m LOG - 1019.896
-m LOG ZERO - 1016.814
-m BYTWO b - 738.879
-m COMPOSITE 2 - - 596.819
-m BYTWO p - 560.972
-m GROUP 4 4 - 450.815
-m BYTWO b -r NOSSE - 332.967
-m BYTWO p -r NOSSE - 249.849
-m CARRY FREE - 111.582
-m SHIFT - 95.813

Table 5: Speed of various calls tomultiply region() for w = 16.

[PSR12] J. S. Plank, C. D. Schuman, and B. D. Robison. Heuristics for optimizing matrix-based erasure codes for
fault-tolerant storage systems. InDSN-2012: The International Conference on Dependable Systems and
Networks, Boston, MA, June 2012. IEEE.

[Rab89] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.Journal
of the Association for Computing Machinery, 36(2):335–348, April 1989.

REFERENCES 45

Method Speed (MB/s)
-m SPLIT 32 4 -r SSE -r ALTMAP - 7185.440
-m SPLIT 32 4 (Default) 5063.966
-m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAP - -r ALTMAP - 4176.440
-m COMPOSITE 2 - -r ALTMAP - 3360.860
-m SPLIT 8 8 - 1345.678
-m SPLIT 32 8 - 1340.656
-m SPLIT 32 16 - 1262.676
-m SPLIT 8 8 -r CAUCHY - 1143.263
-m SPLIT 32 4 -r NOSSE - 480.859
-m CARRY FREE -p 0xc5 - 393.185
-m COMPOSITE 2 - - 332.964
-m BYTWO b - 309.971
-m BYTWO p - 258.623
-m GROUP 4 8 - 242.076
-m GROUP 4 4 - 227.399
-m CARRY FREE - 226.785
-m BYTWO b -r NOSSE - 143.403
-m BYTWO p -r NOSSE - 111.956
-m SHIFT - 52.295

Table 6: Speed of various calls tomultiply region() for w = 32.

Method Speed (MB/s)
-m SPLIT 64 4 -r ALTMAP - 3522.798
-m SPLIT 64 4 -r SSE (Default) - 2647.862
-m COMPOSITE 2 -m SPLIT 32 4 -r ALTMAP - -r ALTMAP - 2461.572
-m COMPOSITE 2 - -r ALTMAP - 1860.921
-m SPLIT 64 16 - 1066.490
-m SPLIT 64 8 - 998.461
-m CARRY FREE - 975.290
-m SPLIT 64 4 -r NOSSE - 545.479
-m GROUP 4 4 - 230.137
-m GROUP 4 8 - 153.947
-m BYTWO b - 144.052
-m BYTWO p - 124.538
-m SPLIT 8 8 - 98.892
-m BYTWO p -r NOSSE - 77.912
-m COMPOSITE 2 - - 77.522
-m BYTWO b -r NOSSE - 36.391
-m SHIFT - 25.282

Table 7: Speed of various calls tomultiply region() for w = 64.

REFERENCES 46

Method Speed (MB/s)
-m SPLIT 128 4 -r ALTMAP - 1727.683
-m COMPOSITE 2 -m SPLIT 64 4 -r ALTMAP - -r ALTMAP - 1385.693
-m COMPOSITE 2 - -r ALTMAP - 1041.456
-m SPLIT 128 8 (Default) 872.619
-m CARRY FREE - 814.030
-m SPLIT 128 4 - 500.133
-m COMPOSITE 2 - - 289.207
-m GROUP 4 8 - 133.583
-m GROUP 4 4 - 116.187
-m BYTWO p - 25.162
-m BYTWO b - 25.157
-m SHIFT - 14.183

Table 8: Speed of various calls tomultiply region() for w = 128.

