Spyglass. Fast, Scalable M etadata Sear ch for
L arge-Scale Stor age Systems

Technical Report UCSC-SSRC-08-01
May 2008

Andrew W. Leung Minglong Shao Tim Bisson
Shankar Pasupathy Ethan L. Miller

Storage Systems Research Center
Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064
http://ww. ssrc. ucsc. edu/

Minglong Shao, Tim Bisson, and Shankar Pasupathy are employees of NetApp, Inc.

Spyglass. Fast, Scalable M etadata Search for L arge-Scale Stor age Systems

Andrew W. Leung Minglong Shaé Tim Bissod Shankar Pasupathy Ethan L. Miller*
*University of California, Santa Cruz
TNetApp Inc.

Abstract data management challenges. For example, a user may
wish to find their recently modified documents or files in
As storage systems reach the petabyte scale, it has becgig home directory that should be deleted. Providing
increasingly difficult for users and storage administratathese type of file metadata queries to users can help reduce
to understand and manage their data. File metadata, sgiefir time spent browsing and managing files. Likewise, a
as inode and extended attributes are a valuable sourcetefage administrator may wish to find which system con-
information that can aid in locating and identifying filesiiguration files were recently changed or the users whose
and can also facilitate administrative tasks, such asgtoraome directories have been growing the fastest to better
provisioning and recovery from backups. Unfortunatelyzform their management decisions. Moreover, queries
most storage systems have no way to quickly and easibh be refined using additional metadata, such as extended
search file metadata at large scale. attributes or a file system path to localize results to a part
To address these issues, we developed Spyglass, affihe file system.
dexing system that efficiently gathers, indexes and querie% fast, scalable metadata search system is critical

file metadata in large-scale storage systems. Our anal¥8+‘°’making such information easily accessible. Previ-

of file metadata frc_)m reall-wc_)rld workloads showed th%hs research on file search has either primarily focused
metadata has spatial locality in the storage namespace dcontent search [5,11, 13, 15, 18,27, 30], which can-

that the di_stri_bution of mejtadata is highly skeweq. Basglt address many of these queries, or relied on relational
on these findings, we designed Spyglass to use index Q%

L . .) . fabase management systems (DBMSs) to organize and
titioning and signature files to quu;kly prunethg file sear¢yox file metadata [2,20, 21, 24]. However, through anal-
Space. We. al§o deve_lppgd techniques to efficiently haq fs of metadata from real-world workloads we show
index versioning, _faC|I|tat|ng both fast update and qeeri at two metadata characteristicgatial localityin the
across h|sto_r|<_:al |r_1dexes, Experiments on systems wi system namespace and higldigewed distributions

up to 300 million files show that the Spyglass PrototyR& metadata values, make DBMSs an inefficient solution.
is as much as _several _thousar_lq times faster than CUTHAAE Jimits their ability to address the challenges in large
database solutions while requiring only a fraction of tll%ale storage systems and supports the notion that exist-

space. ing DBMSs are not a “one size fits all” solution [6, 32].
Thus, given the need for metadata search, it is important to

1 Introduction have a design that can achieve the scalability and perfor-
mance needed to address metadata managementin large-

Modern storage systems are approaching the point whe¢@le storage systems.
they are storing billions of files in petabytes of stor- To address the shortcomings of existing systems, we
age [34]. Organizing and managing this data has becodeveloped Spyglass, a fast, scalable metadata search sys-
a daunting task for both users and storage administratten® designed for large-scale storage systems. Spyglass
for several reasons. Users need to find files with particulamproves metadata query performance through the use of
characteristics in the vast sea of data, and administrateeseral new search and indexing techniques that exploit
need to understand the nature of the data being storedngtadata properties. First, Spyglass uses a novel parti-
more effectively manage the storage. Both tasks requii@ing scheme that exploits the clustering of metadata
the ability to efficiently answer questions about the propalues within the file system hierarchy. Second, we use
erties of the data being stored; thus, fast, scalable seardignature files [8] to quickly prune the set of partitions
over file metadata benefits both users and administratonge must search, resulting in faster searches with fewer
File metadata, such as inode fields (file size, owneisk accesses. Third, we utilize K-D trees [3] to pro-
modification timeetc) and extended attributes, containgide fast search over our partitioned index. Finally, we
important information that can help in addressing thease a new method of index versioning that enables fast

time-traveling queries across multiple metadata versioassub-tree or directory. For example, a number of us al-
Evaluation of our prototype shows query performance imeady frequently use Apple’s Spotlight [2] for this very
provements of up to three orders of magnitude while rpurpose on our desktops. These queries contain multiple
quiring about 10% of the space, compared to a DBM8tributes, such as modification date, file type, and owner,
based approach. Additionally, Spyglass exhibits scalalbeproduce shorter lists of results. This is because, as we
performance as the size of the file system increases. will later show, any attribute alone produces too many re-
The remainder of the paper is organized as follows. Welts; however, theintersectionsare much smaller and
first present an extended motivation for metadata seagften confine the search space to a small set of directo-
in Section 2. In Section 3 we survey metadata characteées. Similarly, queries are often localized to sub-trees
istics and discuss why these characteristics make DBM8ghe file system. This allows users to limit and reason
an ill-suited solution. We then discuss the design and imbout query results because queries are often not looking
plementation of Spyglass in Section 4. We present an & files anywhere in the file system, but rather within a
perimental evaluation of Spyglass in Section 5. Relatgtbre specific location.
and future work are discussed in Sections 6 and 7, respecdAdministrative queries, while less frequent than user
tively. We summarize and conclude in Section 8. gueries, are equally important as they aid administrator’s
management decisions. Here again, query results can be
confined to a few sub-trees. For example, an administra-
2 Motivation tor might ask about which system configuration files were
recently modified or deleted. Also, both user and adminis-

In order to design a scalable metadata search system t@r queries have locality of reference. That is, they fre
can address user and administrator queries, it is imp@rently find and search for files in only a few locations in
tant to understand existing storage management probletfig file system, such as a home directory or project work-
and how Searching metadata can solve them. This 5@@. directory. This is because important data tends to be
tion discusses several use cases for metadata searchChtgdered in relatively small sub-trees.
describes common query characteristics that a metadatAdministrative queries often ask about summary or ag-
search system might be able to exploit. Some of thegfggation information. These queries allow general in-
use cases are obtained through a survey of IT dep&grmation about the data in the storage system to be ex-
ments, while others are personal experiences of the dacted. Also, both administrator and users greatly benefit
thors and other users. Thus, we believe these exampled@ being able to query about the past versions and the
good representations of questions facing individual uséstory of metadata. This can used for extracting trends
and storage administrators. It is important to note, ho@ver time or tracking how the storage state changes.
ever, that these queries are not equally common, nor hav®ur approach does not currently consider content-
the same performance requirements. For example, usased queries, such as those provided by Google Desk-
queries to find their document files are likely far mor®p [12]. While content-based queries are an important
common than administrator queries about the long-tepass of metadata query, Spyglass does not currently han-
growth of the storage system. Likewise, common usgle such queries; we plan to address this area in future
queries require fast performance for usability, while agork.
ministrator queries have slightly more relaxed require-
ments, though must still be able to quickly query large
sets of files. 3 Metadata Characteristics

Metadata queries can be characterized by several fea-
tures, including the locality in the file system, the loaalitThis section discusses the characteristics of storage sys-
of reference, the need for metadata history, the numibem metadata that make the “one size fits all” solution us-
of query predicates (metadata attributes in a query), and a general-purpose DBMS [32] inadequate for building
the number of results returned (or its selectivity). We e&-high-performance metadata search system.
pect most query in a large-scale storage system will be ofwe would like to first define the terminology used in
two classes; either, summary queries (*how much spabé paper before discussing the characterist@&torage
is userX consuming”) or queries that return a relativelgystem metadatar simply metadatais a general term
short list of files. This is because queries that return vemferring to the information describing objectsg.files,
long lists of results provide no focused information, d&tored in a storage system. It includes ihedestructure
creasing their usefulness. used in most file systems and any extended tags added

Some of the most common queries are likely to be udgy applications or users. This paper focuses on the inode
queries to find files with particular characteristics. Thes&ucture, although our solutions can be extended to ad-
gueries may search the entire file system or just withilness other types of metadata. The teattmibute refers

Attnbute - Description Attribute D_escnptlon Data set Description # of files | Server Capacity|
inumber inode number owner file owner — —
. o Web web & wiki server | 15 million 1.28TB
path full path name size file size) -
ext file extension ctime change time Eng build space 60 million 0GB
) . . . Home home directories | 300 million 76.78TB
type file or directory atime access time
mtime modification time hlink hard link # | Table2: Metadata Traces. The small server capacity of the Eng

trace is because the majority of the trace is small sourceecod

Table1: AttributesUsed. They are the fields in the “inode” Stru?i'leS' 99% of files are less than 1 KB

ture. We extracext from path.

ext size uid ctime

Web | 0.000162% —0.120% 0.0579% —0.177%| 0.000194% — 0.0558% 0.000291% — 0.01059
Eng 0.00101% — 0.264%| 0.00194% — 0.462% 0.000578% — 0.137%| 0.000453% — 0.01039

Home | 0.000201% — 0.491% 0.0259% —0.923%| 0.000417% —0.623%| 0.000370% —0.128%

Table 3: Locality Ratios of the 32 most frequently occurring values. All Locality Ratios are well below 1%, which means files
with these attribute values are in less than 1% of directaria other words, more than 99% of directories can be prumewh the
search space.

to the specific information of metadata, such as file size,

oo ; : AN /.
modification time, and owner of a fileAttribute value
or simply valug, refers to a value of a specific attribute. /é) (é \\Q /é)

For example, “5KB” is an attribute value of the file size ‘ b ‘ ‘ %
attribute and oot is a value of the file owner attribute.
Attributes usually have a large set of possible values. Ta- (&) Locality Ratio=54% (b) Locality Ratio=38%
ble 1 lists the attributes used in this paper. Figure 1: Examples of Locality Ratio. The Locality Ratio of
The metadata used in this paper was gathered fréivalue =ht m is 54% 7/13) in the first tree and 38%<
traces taken on three network file servers—Web, Eng, atid3 in the second tree. Therefore, the valuabfil has better
Home—in a NetApp data center; characteristics of thedgatial locality in the_second tre_e than in the first one which
file servers are shown in Table 2. conforms the conclusion by looking at the trees.
Although the three traces represent different workloacg%

hei ib | how th h istics: h t file if any of its sub-directories contains a target file.
their attribute values show the same characteristics: ing this metric, an attribute value has good spatial lo-

spatial I_ocality in the h_ierarchical file SYSte”_‘ namespagg“ty if the corresponding Locality Ratio is low, meaning
and a highly-skewed distribution. The following two su he target files are clustered in a few directories. Spatial

sections explain these properties and their implications ocality is important for search performance, since it al-

the design and performance of Spyglass. lows us to prune the search space to those directories that
contain target files.
3.1 Spatial Locality of Attribute Values Figure 1 shows a simple example of the Locality Ratio.
Suppose we want to compute the Locality Ratio of html,
The most interesting characteristic of storage systemwalue ofext, for two simple file system trees. Each node
metadata is thepatial locality of attribute values in the in the tree graphs represents a directory. Black nodes and
hierarchical file system namespace. We make a critigemhy nodes are the directories that directly and indirectly
observation that attribute values tend to be clustered wespectively, contaimt nml files. It is easy to see that
der a few file system sub-trees. For example, files withe Locality Ratio is a good indication of spatial locality
the ext valueht ml are likely to reside under directoriesbecause it correctly reflects the fact that the second tree
related to web pages, and files with thener valuet om has better spatial locality than the first one (389%64%).
tend to reside in the sub-tree rooted Abne/ t om This Moreover, a file system tree with better spatial locality
locality is hardly surprising, since the hierarchical struwill more quickly allow a system to prune directories that
ture of file systems is used by users to classify and managanotcontain a file that matches a query.
files. We calculated the Locality Ratios of the 32 most fre-
We measure the spatial locality of a metadata attribugaently occurring values of different attributes in Web,
value by itsLocality Ratia The Locality Ratio of an at- Eng, and Home, summarizing the results in Table 3.
tribute value is defined as the percentage of directoriBisis table lists Locality Ratios of 4 attributesxt, size,
that contain files with that value (referred to &sget owner, andctime. Other attributes have similar Locality
fileg, compared to the number of all directories in thRatios which are omitted to save space. In all cases, at-
storage system. A directory is considered to contain a taibute values show very good locality in the file system

100 i i i i 100

. 10 ¥ . 10 F
> 1t > 1t
H 0.1 ¢ H 0.1 ¢
[0.01 | [0.01 |
g 0.001 | g 0.001 |
£ 00001 £ 00001
2 le-05 ¢ 2 le-05 ¢ ext
1e-06 | 1e-06 | (ext SSI'ZZES —
1e-07 : : : : 1e-07 L
1 10 100 1000 10000100000 1 10 100 1000
Rank of ext Rank of (ext, size)
(a) (b)

Figure2: Attribute Value Distribution Examples. A rank of 1 represents the attribute value with the highestddunt.

namespaceg 0.01); thus, more than 99% of directoriesorresponding single attribute; most are at least an order
can be pruned from the search space. of magnitude smaller. For attribute combinations that in-
Unfortunately, current metadata search solutions areedve more than two attributes, their file counts are even
ther namespace-oblivious, such as the DBMS soluticsrsaller.
treating path names as normal character strings, or unThe above two figures show two observations on stor-
aware of spatial locality, such as brute-forth search a&ige system metadata: searching for popular values of a
find. In contrast, the search algorithm and data strusingle attribute results in a large set of matching files;
tures in Spyglass exploit spatial locality to achieve betteut searching for combinations of multiple popular single-
performance, as demonstrated by our experimental resattsibute values often results in a very small set of match-
in Section 5; Section 4 describes the Spyglass searchirg files. Therefore, indexes that caimultaneously
gorithm in detail. search on multiple attributes to obtain the final matches
directly are the best solutions for Spyglass, where the ma-

T . jority of queries on metadata are multi-attribute queries,
3.2 Skewed Distribution of AttributeValues _ i ccedin Section 2.

Another prominent characteristic of storage system metaEXxisting solutions in DBMS using single-attribute in-
data is the highly skewed data distribution for almost @lexes, such as index ANDing [7] or composite in-
attribute values and combinations of attributes. Figuredgxes [25] cannot avoid unnecessary processing on un-
shows the distributions foext and the combination of wanted intermediate results, making them inappropriate
(ext, size) from the Home trace. for Spyglass. Rather, multidimensional access meth-
The figures are plotted as follows. Taking Figure 2(&¢s [9], also known as multidimensional indexes, offer
as an example, we count the number of files for ema¢h better solutions for Spyglass. Among a variety of multi-
value (such a$it nl , doc, andpdf) and rank allext dimensional access methods, the design of Spyglass uses
values based on their file counts with rank 1 being tifeD trees [3], a popular multidimensional access method,
ext value that has the most number of matching files. \i@improve the performance of multi-attribute search. Sec-
then plot the ranks oéxt values (the X axis) and theirtion 4 explains how Spyglass adopts K-D trees to search
corresponding file counts in percentage (the Y axis) usifrage system metadata and how it balances the trade-
a log-log scale. Figure 2(b) is plotted in a similar wa@ffs of K-D trees.
using values of the two-attribute pa@xt, size).
Figure 2(a) shows that 80.0% of files have one of 20 . .
popular values oéxt while the remaining 20.0% of files4 Design and | mplementation
account for over 40000 other file extensions. Overall, the
distribution curve is similar to th@ower lawdistribu- The goal of Spyglass is to aid data management by provid-
tion [29]. This observation holds true for other attributdag a scalable, search-able repository of all file metadata
across all traces we examined. We do not graph these fluthe storage system. Our design was guided by several
to lack of space. principles: (1) The index should be sensitive to the file
We next generated a Cartesian product of the top &gstem’s hierarchy. The hierarchy already defines how
values fromext andsize, yielding 20x 20 = 400 differ- users organize and group files, and contains information
ent pairs. We can see from the file counts (in percemout how files are accessed and used. The index should
age) shown in Figure 2(b) that the file counts of thessploit this information. (2) Fast query execution is more
pairs are significantly smaller than the file counts for thmportant than strict consistency. Most queries can be ad-

Query Results File System Hierarchy
/

~
Spyglass
r Index gﬂ /home /usr /etc

. R
[/home/aleung /home/elm /usr/include /etc/rc.d

7

letc

Sub-Tree
Partitions

|
letc/rc.d

A
Y ¥ y Vv
C 1 T 1

Disk

Storage System
i
)
2
=]

)
o
[
(7]
=2
(]

—/

)
o
=
Y
=
(]
=

—/

A 4
Local File System)

)

Figure 3: Spyglass Overview. Spyglass resides within the stor-F'gure 4: Hierarchical Partitioning Example. Sub-trees par-

age system. The crawler extracts file metadata, which gasdst tsltlonfé::?rmgir}sg;%‘ ||ndaei(r:éff§fr i:tb]iltl;:ys;ft?:i;#:meme
in the index. The index consists of a number of partitions ang”? Py P '

versions. . .
based on the storage namespace hierarchy. This allows

the index to be managed and searched at the granularity

equately satisfied even with slightly stale data, while pgjt sup-trees, which is critical to providing scalability as
formance is critical to usability. (3) File metadata higtofe system grows. Partition versioning manages index up-
should be maintained because it facilitates queries regajgtes and versions. Index updates are batched and applied
ing usage and storage trends. (4) Dedicated hardwareyeaach partition as new incremental versions. Version-
sources should not be required as they may become Rrgr updates enable users to query over past versions and
hibitively expensive in large-scale systems. Instead; SRymplify index update semantics. Throughout this section
glass should be able to reside within the storage systefje discuss the motivations behind these concepts and how

In addition to these principles, we have chosen to foctkey are applied.
on several types of queries we believe are the most impor-
tant and most likely. 1) Multi-dimensional queries Witi}1 1
more than one query predicate. Specifying queries with
multiple predicates is an effective way of refining searcthe Spyglass index is partitioned into a number of sep-
results. In a large-scale storage system, single predicatate indexes based on the file system’s namespace hier-
queries often return too many results to be of use. &@jchy. The concept of hierarchical partitioning is a di-
Queries localized to a sub-tree or directory. Localizingrsion from the traditionally row, and more recently col-
queries allows users to control which files to search. lfimn [31], physical designs of DBMSs. Rather than store
large-scale storage systems, searching the entire namesords physically adjacently on-disk using their row or
pace is often not needed as users can reason aboutciémn order like DBMSs, Spyglass stores records adja-
location of the files they care about. 3) Time-travelingently on-disk that are hierarchically nearby in the names-
queries. Querying across multiple metadata versions g&ce. Hierarchical partitioning is illustrated in Figure 4
lows users to understand how storage is used and howlitere sub-trees are mapped to separate partitions, shown
changes. This information can improve how users orda-gray. Each partition is stored sequentially on-disk. The
nize their data. motivation behind this design is that queries can often be

Spyglass consists of two major components: the Spatisfied with only a small fraction of the hierarchy. For
glass index which stores metadata and serves queriesexaimple, searching for usal eung’s presentation files
a crawler that extracts metadata from the storage systéikely does not require searching all sub-trees. Likewise,
Figure 3 provides a high-level view of Spyglass. Thecalizing queries to a sub-tree reduces the search space.
Spyglass index design utilizes two key concefiierar- As a result, only a small subset of the hierarchy often
chical partitioningandpartition versioning Hierarchical needs to be retrieved from disk. By clustering the hierar-
partitioning decomposes the index into separate parstiarhy on-disk and allowing only portions of the hierarchy to

Hierarchical Partitioning

be read at a time, queries can often be satisfied with onlyThe partition cache uses a simple LRU algorithm to
a few small sequential reads, even in large-scale system&nage memory. Similar to that of file system caches,
In addition, hierarchical partitioning utilizes locality queries have locality of reference and a partition index
file metadata and access patterns. The spatial locafitieried once is more likely to be queried again. In the
analysis in Section 3.1 shows that files nearby in the hiéemmon-case, only a small set of partitions, correspond-
archy are more likely to share metadata values than thé@ to popular sub-trees, are frequently searched. An
farther apart. For example, most or all files in a persordRU algorithm keeps these popular partitions in-memory,
directory may share a common owner, or files in a dire¢hile most reside on-disk. As a result, querying com-
tory may share a common modification time. This is al§80only accessed sub-trees will produce no disk accesses
true for extended attributes, where only a small related &éd be very fast.
of files tend to share attribute keys. As a result, fetching a
partition of t_h_e hierarchy from di§k will often fef[ch anumy 5 The Partition | ndex
ber of qualified records. Likewise, not fetching records
from all parts of the hierarchy can often reduce the numhe goal of the partition index is to quickly satisfy re-
ber of unqualified records fetched. File access pattemsests for all metadata in a sub-tree partition. To do this
also exhibit locality. More precisely, not all directoriesve use a K-D tree [3]. A K-D tree is &B-dimensional
and sub-trees are equally popular [1,19]. Often onlybénary tree that provides logarithmic point, range, and
small fraction of directories, relative to the entire hieranearest-neighbor search ovdedimensional space. It tra-
chy, are frequently accessed. This implies that only a fraerses the tree by alternating the dimension (). used
tion of hierarchical partitions may be frequently querieth pivot at each level. Each metadata attribute is a unique
which can be stored in-memory with infrequently queriedimension in the K-D tree. A K-D tree is used because
partitions stored on-disk. it provides fast, multi-dimensional search over all meta-
We refer to each hierarchical partition asub-tree par- data in the partition. Alternative multi-dimensional stru
tition. A sub-tree partition manages metadata for one tires, such as R-trees [14], Grid Files [23], and K-D-B-
more of the file system’s sub-trees. In Figure 4 we stiees [26] either perform poorly for non-uniformly dis-
different sub-trees map to different partitions. Our cufributed data or are disk-based structures. Also, space
rent prototype uses a simple greedy algorithm to do tisigerhead is minimal because beyond the file metadata,
mapping. The Spyglass index is simply a tree of sub-tresly the tree pointers need to be stored.
partitions. The tree’s parent-child relationships aresdas A K-D tree is poor for frequently changing data because
on where the sub-tree appears in the hierarchy. A sifosan perform poorly when unbalanced. This means fre-
tree partition has two componentspartition indexand gquent metadata updates can degrade performance. How-
partition metadata The partition index stores and servesver, partition versioning, which manages index updates,
queries for metadata in its assigned sub-trees. Partititgats updates as immutable versions. Therefore, a K-D
metadata is used to determine if a partition is relevant térae is never updated in-place and will not become un-
query, aid aggregation queries, and support partition vbalanced. We discuss partition versioning further in Sec-
sioning. tion 4.4.
The entire Spyglass index is stored on-disk. However,
a copy is kept in-memory, with the exception of the party 3 partition M etadata
tion indexes. The Spyglass index tree and partition meta-
data are small, however the partition indexes, which stofeach sub-tree partition also contains metadata about the
the metadata, are too large to all fit in-memory. Instedtles and sub-trees it indexes. This includes the names of
apartition caches used to manage the paging in and othe indexed sub-trees, summary statistics, version infor-
of partition indexes from memory. The partition cachmation, andsignature files[8]. Summary statistics aid
pages entire partition indexes to and from memory. Thggregation and trend queries. Statistics, such as min-
motivation is that if a file must be read for a query, it isnum, maximum, and average values are computed for
likely that other files nearby in the hierarchy also need &ach metadata attribute when the sub-tree partition is up-
be read; paging entire partition indexes allows these fildated. By pre-calculating statistics, aggregation anttire
to be fetched in a small sequential read. This conceptiiseries can be satisfied without needing to read or process
analogous to file system embedded inodes [10]. Embétformation from the partition index. Each partition also
ded inodes store inodes adjacent to their parent directorgintains aversion vectorwhich is a vector of different
on-disk. This allows the directory and its inodes to kgartition index versions. We elaborate on version vectors
fetched in a small, sequential read under the assumptfiisection 4.4.
that an access to one directory or inode will likely accessEach sub-tree partition contains a signature file for each
other inodes in the directory. indexed metadata attribute. Signature files, or just signa-

tures, are compact summaries of a partition index’s cc Baseline Incremental

tents. Signatures are used during query execution to de IndexTO Indexes

mine if a partition index needs to be searched by determ YV .

ing if it contains any files matching the query predicate /\ |

Note, signatures onlfestsfor the existence of matched Jetc T1 | T2 | leVersion

files. The partition index must be queried to retrieve i 4 |~ Vector

information. fetc/re.d

A signature is a bit-array with an associated hashil _ i
function. All bits in the signature are initially set to zerc lusr
A common example is a Bloom Filter [4]. When a mete h | /:sr/include
data value is inserted, itis hashed to a bit-position, modt
the size of the signature, which is then set to one. A que
only searches a partition if signature bits for all predésat

inthe query are set to one. This allows Spyglass to quicl
test which partitions are needed for a query and which ¢

not. However, a signature can only determine if a partiti¢fiy,re5: Versioning Partitioning Example. Each sub-tree par-
index doesiothave any records matching the query pregtion manages its own versions. A baseline index is a normal
icates. This is due to hashing collisions which can causgrtition index from some initial timegI’ Each incremental in-
false-positives. False-positives do not affect the aaguralex contains the changes required to roll query result fodita

of results because a partition with matching results wilnew version. Each sub-tree partition manages its versiam i
never be skipped. However, false-positives can degragesion vector.

performance by causing partitions with no matching re-

sults to be searched. Spyglass controls false-positives e discuss how incremental changes are collected later
ways. First, each partition index is kept relatively smally Section 4.5. Each sub-tree partition manages new ver-
keeping the chances of collision low. Second, metadafgns for its assigned sub-trees, meaning individual par-
attributes can use specialized hashing functions that hg¥gns are versioned rather than the Spyglass index as a
more control over false-positive occurrences. For exafhole. This is shown in Figure 5. A versioned sub-tree
ple, a signature of file sizes may wish to assign each Birtition contains two components:baseline indexand

to a size range rather than a unique size value. This ¢agkemental indexeA baseline index is a normal sub-tree
allow false-positives to be clustered for the frequently opartition index and represents the state of the storage sys-
curring size ranges, reducing false-positives for less pagm at time To. An incremental index is an index of meta-

ular ranges. datachangesbetween two points in timeT,_; and Ty.
An incremental index contains the information needed to
4.4 Partition Versioning roll query results fronT,,_; forward toT,. These changes

include metadata creations, deletions, and modifications.
Spyglass receives index updates in batches and treats @&ychtoring just incremental changes, partition versioning
batch as a new version. The motivation is two fold. Firdtas minimal space overhead.
we wish to support time-traveling queries as they enablePartition versioning begins with a baseline index, as
useful data management queries. Second, we wish to sitewn in gray and label€fd, in Figure 5. When a batch of
plify index update semantics. Designing for frequent, immetadata changes are receive@ahey are used to build
place updates greatly complicates design as locking ancremental indexes. Each sub-tree partition manages its
synchronization must be considered. Also it degradiésrementalindexes using a version vector, which is a vec-
query performance as queries and updates contendtferof incremental indexes, each representing a different
shared data structures and cache space. This motivatiersion. We see in Figure 5 that each partition’s vector can
follows from our design principle that index consistenadye a different length because partitions are likely not up-
is, in general, less important than query performancedssted at the same rate. The partition cache also manages
most queries do not require strict consistency. As a residcremental indexes and pages them in and out with the
Spyglass trades-off index consistency for scalable tingaseline partition index. As a result, partition versianin
traveling queries and simple update semantics. adds an overhead to page-in a partition as all incremental
indexes must also be read. The motivation behind this is
that due to locality of reference, queries will often hit in
the partition index cache. Thus, in the common-case, ver-
Updates are applied in batches of incremental metadsitaning introduces a small overhead because no additional
changes and each update represents a new index verslmk accesses are required.

4.4.1 Creating Versions

To retrieve query results from any index versidR, represent storage system state at the end of each day. At
the results from the baseline indek, andall changes the end of the week, all but the latest daily checkpoint are
betweenTy andT, are needed. For example, in Figure 8eleted. Likewise, at the end of the month, all but the lat-
guerying the sub-treehone/ al eung requires the base-est weekly checkpoint are deleted. This results in differ-
line index and results from incremental indeXesndT;. ent time-scales maintaining different version granwarit
The changes fronT; and T3 modify the results (add or Over the past day any hour can be searched. Over the past
remove results) fronfy to produce query results that reweek any day can be searched, over the past month any
flect the state of the storage systenTat Because eachweek can be searched, and so on. Managing index ver-
incremental index only contains changes for a partitiosipns this way allows time and space to be traded-off for
retrieving and applying changes is often very fast. Thilse required time-traveling capabilities.
means that the partition versioning overhead is dominated
by the number of partitions to page-in from disk in order

to satisfy a query. S _ 45 Collecting Metadata Changes
The goal of an incremental index is to quickly retrieve

the metadata needed in order to roll the baseline qugg/collect batches of metadata changes Spyglass takes ad-
results forward to a more recent version. To do this Wantage of snapshot technology in the WAFL [16] file sys-
again use a K-D tree. Each K-D tree indexes metad@é@h on which we designed our prototype_ Our approach
changes. Metadata changes include the type of chaggews the difference between two file system snapshots
(create, delete, or modify) and the changed metadatape quickly calculated. This provides a fast method for
Changes that create metadata include the newly creajgfierating the batches of update Spyglass needs. It should
metadata, changes that delete metadata include the delggeloted that Spyglass does not depend on this approach.
metadata, and changes that modify metadata include A}y method for collecting metadata changes will suffice.
old and new metadata. This is because a modification (F%\Never, alternative solutions presented us with a num-
cause a new metadata version to match a query, as welkes, of challenges. Periodically walking the file system
cause old metadata versions to no longer match a queie is a time consuming process. Also, buffering file sys-

Thus, we must be able to add the new results that maggh event notifications to generate batches of changes can
the query and remove the old results that no longer magelyuire large amounts buffer space.

from the resullts lists. Given two file system snapshots, we quickly calculate

metadata differences between them using WARhsde
4.4.2 Managing Versions file, a file containing all inodes in a snapshot. When a
shapshot is created in WAFL, it copies the inode file us-
While maintaining many incremental versions can facing a copy-on-write mechanism. As a result, we can sim-
itate useful queries, they also add space and time ovsiis read each snapshot's inode file, and compare them
head. Over time it becomes less useful to keep older vigrgenerate the metadata changes between two snapshots.
sion at a fine time granularity. To reduce the overhe&hapshot-based differencing is very fast because it only
for older versions, Spyglass usesrsion collapsingand needs to compare the inodes that have changed between
version checkpointingVersion collapsing merges increthe two snapshots (due to copy-on-write). The output is
mental indexes with a baseline index, reducing overhegtbg of all added, deleted, or modified metadata. If only
by removing the incremental index at the cost of versi@me snapshot is used, a log equivalent to a crawl of the
granularity. When collapsed, an index becomes accuraigire file system is produced.
to the time of the last collapsed incremental index. Ver-
sion checkpointing allows a collapsed index to be saved to
disk and represents a landmark versions of the index. A . }
landmark version is a full Spyglass index that is retaine@, EXperimental Evaluation
as it represents some significant point-in-time.

We describe the use of collapsing and checkpointihgthis section, we evaluate our Spyglass prototype. The
using an example. Suppose that the Spyglass index is gpal of the evaluation is to understand performance and
dated hourly, creating a new incremental version of tlsealability properties and how they compare to existing
index. Time-travel can be performed at hourly granulddBMS solutions. Overall, Spyglass achieves fast query
ity. At the end of the day, incremental versions can execution, hundreds of milliseconds for common queries,
collapsed into the baseline index. This reduces time aeven as the number of files increases. Spyglass also con-
space overhead, however we can no longer travel hosmes less space and has better update performance than
by-hour over the last day. Also, at the end of each d&yBMSs. The versioning mechanism of Spyglass is effi-
each collapsed index is checkpointed. These checkpoitient which incurs little overhead for most queries.

214293 5.2.1 Update Performance
100000 —

We compare the performance of updating baseline in-

90000 B Spyglass g
80000 | M System X Load dexes of all metadata traces in Spyglass to the perfor-
©70000 -| M System X Index mance of bulk loading and index building in the two

260000 4 System Y Load DBMSs. We do not look at incremental index update per-

> 50000 System Y Index formance as the DBMSs have no versioning, making an

540000 accurate comparison difficult.

5-30000 Figure 6 shows that Spyglass is between 8x and 44x
20000 faster than System X and System Y. Spyglass indexes all
10008] | attributes of each metadata entry once and usually writes

to disk in relatively large sequential streams. In confrast
each DBMS indexes each attribute separately, in addition
to loading the table. Spyglass is still faster even if we
Figure 6: Comparison of Update Performance. All times are compare only the indexing time in the DBMSs with the
reported in seconds. It measures the time to update Spyglts®l update time in Spyglass. To put it in perspective,
with no incremental indexes and the time to load the table a@pyglass updates the 300 million Home trace files in one
build indexes in the DBMSs. Spyglass is 8 to 44 times faster thnd a half hours, while the DBMSs take 18 hours and 2
the DBMSs. and a half days, respectively. Last but not least, Spyglass
update performance shows a linear scalability with regard
; to trace sizes. The performance difference between the
51 Experimental Setup DBMSs is due to the significant differences in how each

All experiments were run on a Dual core AMD OpterorI%JUIIOIS indexes.

machine with 8 GB of RAM running Ubuntu Linux 7.10.)
Related files and data sets are stored on an NFS partit®g;2 Metadata Collection Performance

mounting a high-end NetApp controller. We now show the performance of baseline and incremen-

All experiments use the same metadata traces as @éecrawling using our snapshot-based file system crawler,
scribed in Table 2. For Web and Eng, we also colleghd compare it to an optimized multi-threaded crawler
several days of incremental snapshot metadata. Each ¢hat walks the file system tree to compute snapshot differ-
tains daily changes of all metadata. ences, which we call the host-based crawler. Figure 7(a)

We compare Spyglass to two popular relationghows the time to generate a baseline using both the host-
DBMSs, anonymously referred to as System X and Sygased crawler and the snapshot-based crawler. A base-
tem Y. For both DBMSs, we use an index-based physidifie crawl generates a complete list of all metadata for a
design, which consists of a base relation with all attributgiven file system hierarchy. This figure shows see that
in Table 1. Each attribute has a B+-tree index built die snapshot-based crawler outperforms the host-based
top of it. Spyglass uses the same attributes when build@f@wler; the snapshot-based crawler can leverage the on-
its K-D trees. We use this design, as opposed to vedisk layout of file metadata by sequentially scanning the
cal partitioning or composite indexes, because it is easyn@de file and reporting each file’s metadata. The host-

implement and we believe is a likely design choice forkased crawler on the other hand must traverse the file sys-
metadata DBMS. tem hierarchy and then sort the metadata. The host-based

Internal cache sizes are set to 128 MB. 512 MB ar%awler generates a baseline in a sorted order to facilitate
2.5GB, for the Web, Eng, and Home traces, respectivéR/,:rer_nemaI crawling.
in all three systems. This amounts to about 1 MB for ever A'_] incremental crawl rep_orts the changes between two
125,000 files. Spyglass also uses a soft limit of 100,0 grsions (snapshots) of a file system. For the host-based

files per sub-tree partition index. There are no limits gfi@Wler, an incremental crawl is generated by creating a
the size of an incremental index. second baseline, then sequentially scanning the two base-

lines to determine their differences. Figure 7(b) shows the
time to generate the incremental changes between two file
system versions when the relative changes to the baseline
5.2 Microbenchmarks Evaluation are 2%, 5%, and 10%. For instance, the plot Host-5% at
40 million files means a change of 2 million files. This
Our microbenchmarks evaluate update and metadata €iglire shows that the snapshot-based crawler significantly
lection performance, space overhead, Spyglass indexdatperforms the host-based crawler. The snapshot-based
cality, and selectivity sensitivity. crawler is able to avoid comparing blocks making up the

350 tree partition’s metadata. This also explains why Spyglass

ol i consumes less total space than just the DBMS tables.
= = . .
5 S 200} . Once again, Spyglass shows very close to linear scala-
2 § Eg [i bility across the traces. Since disk space is cheap, the ram-
: s0f : ifications of space overhead is often not the on-disk foot-
0 FE gt :0’ "26"/1’00 print, but rather the number of records that can be stored
0 20 40 60 80 100 Files (Millions) in-memory. With a smaller space overhead, a larger frac-
il illi
E';f (Milions) Host10% —— SD10% = tjon of the index can be stored in memory, reducing disk
SD e Host2% % SD-2% --o- gccesses, thereby improving query performance.
(a) Baseline (b) Incremental: 2%, 5%, and

10% changes from baseline 524 |ndex Locality

Figure 7: File System Crawling Performance. Compare Host-

based crawler (Host) and Snapshot-based crawler(SD). Here we measure how effectively Spyglass exploits local-

ity in the namespace hierarchy. To do this, we generate
a query log for each attribute and each two-attribute pair

103

100 — - | based on the template “select files with attribute = value”
90 - Spyglass and “select files with attributel = valuel and attribute2
80 System X Table = value2”, respectively. For example, the query template
70 —-{ M System X Indexes

for ext is “select files withext = value”. Each log con-

60 1M System Y Table sists of 300 queries with values randomly selected from a

Space Overhead (GBs)

28 7| SystemYlindexes full metadata trace and 200 queries with values randomly
30 A selected from the corresponding incremental trace, result
20 — ing in a total number of 500 queries. The reason of using
10 4 the incremental traces is to incorporate a notion of pop-

o - L ularity into the query logs because the incremental traces

Web Eng Home represent frequently accessed files.

Due to the space limit, we report only the results of ex-
ecuting the query logs faext, owner, and €xt, owner)
Figure 8: Comparison of Space Overhead. All numbers are fom the Eng trace. Recall that Spyglass uses signature
reported in gigabytes. For the DBMSS, this measures theesspagag 1 eliminate sub-tree partitions from the search space

consumed by the table and B+-tree indexes. Spyglass requige _ ... - : - . .
5x to 8x less space than either System X or System Y. A partition is queried pnly if all signature bits correspend
ing to the query predicates are set to one.

inode file that haven’t changed between two snapshots befigure 9(a) shows a cumulative distribution (CDF) of
cause of WAFL's copy-on-write mechanism. As a resuﬁyb-tree part|t|0_ns queried for each query log. We find that
incremental snapshot-based crawl performance is relafif®0 of the queries oext reference fewer than 75% of the
to the number of changed files, not the total number $fP-tree partitions, while over 50% of thex, owner)
files. However with the host-based crawler, performang@Bd owner queries reference fewer than 2% of sub-tree
is relative to the total number of files because it must filg@rtitions. This is because ttwvner attribute is more

generate a sorted baseline, then difference the two b#destered in the hierarchy thaext, which confirms the
lines. findings in Table 3. In addition, thext, owner) queries

reference far fewer indexes thext or owner alone. This

is because the combination of the two attributes is highly
5.2.3 SpaceOverhead clustered. Multi-attribute queries often provide better |
This section examines the on-disk space consumed bycality than single-attribute queries.

three systems. For the DBMSs, this includes the table andrigure 9(b) shows a CDF of the cache hit rates in our
B+-tree index space. Figure 8 shows Spyglass takesdssery logs. Again, we find that trext queries have worse

to 8.5x less space than either DBMS. This is due to tviacality than either of the other logs. Only 22% et
main reasons. First, Spyglass indexes each metadataga@ries have a cache hit ratio of 85% or higher while 91%
try only once whereas the DBMSs require the table spaafethe owner queries have a cache hit ratio of 99% or
plus the space for each index where each sthréslue, higher. Becausext values are more distributed through-
record id) pairs (minus duplicate values). The index spaget the hierarchy, it is less likely that a queried partition
alone is larger than the total space in Spyglass. Secoalteady in the cache.

Spyglass saves space by storing only partial pathnameExperiments on other query logs across the three data
because part of the path prefix is already stored in the sabts have similar observations. In summary, these mea-

Trace

10

100

20

Percent of Sub-tree
Partitions Queried

0

Web trace with varyingelectivity(# of results / # of all
records). Figure 10 plots query selectivity against query

80
50 ,//’ execution time. We find that the performance of System X
20 / -------- ” and System Y are highly correlated with query selectiv-

ity. However, this correlation is much weaker in Spy-
glass, which exhibits much more variance. For example, a

: ‘ T Spyglass query with selectivity>710 ¢ has a 161 ms run
0 20 40 60 80 time while another with selectivity 8 10-® has a 3ms run
T ext -~ owner " ext/owner time. This is because Spyglass is more sensitive to hier-

(a) CDF of sub-tree partition accesses.

Percent of Queries

archical locality and query locality than query selecyivit
This is unlike DBMSs, which access records from disk
based on the predicate it thinks is the most selective. The

& 100 . _ KS IS 1
T 8ol | ///7 weak correlation with selectivity in Spyglass means it is
:—'% /f/' less affected by the highly skewed distribution of storage
S €0 metadata which makes determining selectivity difficult.

S 404

E 1

8 204)

5 o0 5.3 Macrobenchmark Evaluation

0 20 40 60 80 100

We now compare the performance of Spyglass with Sys-
ext -~ owner = extjowner tem X and System Y on a macrobenchmark generated
Percent of Queries based on three query logs that mimic real possible user
(b) CDF of partition cache hits. queries. Each query log represents a different kind of
Figure 9: Index Locality. Figure 9(a) is a cumulative distri- query a user may ask. The first is a user finding the
bution function (CDF) of the fraction of sub-tree partitoac- space consumed by their files of a particular type. This in-
cessed. Figure 9(b) is a CDF of the fraction of partition cachvolves queries wittowner andext predicates, retrieving
hits. Our query logs issue single attribute queries véihand and summing file sizes{ze). The second is a user locat-
owner and two attribute queries with both. We find that Spyglaﬁsg files in their personal directory. This involves queries
queries only a fraction of.the.partitions., with few disk exses, with owner, type, andpath predicates. Matched results
forext andowner combinations queries. must have a prefix that matches the path predicate. File in-

ode numbersifumber) are returned. The third is a user

* Spyglass —— System X
Query Selectivity

System Y

o 10s ey locating their recently modified files. These queries in-

E 1s . A/.\/v o volve owner, ext, path, and time range predicate. The

-% 100ms S - time is a two-week range oventime. These templates

S loms L7 tL . are chosen because each looks at the impact of different

Y . ¢ query types on the index.

g 1ims . We generate our macrobenchmark by filling each query

© 100us ‘ ‘ ‘ ‘ ‘ log with attribute values randomly selected from each
.000001.00001 .0001 .001 .01 1

trace. By randomly choosing values, the frequency distri-
bution of attribute values is maintained in the query log,

meaning more frequently occurring values are more fre-
queries in our query log is plotted against the executioretfor quent_ly que_rled_. When _randomly selecting files, we '9-
that query. We find that query performance in Spyglass is mytare files W'tr_‘ high hard link Counts_because they skew hi-
less correlated to the selectivity of the query predicabemthe €rarchy locality and are an aberration from normal meta-
DBMSs, which are closely correlated with selectivity. data properties. As a result, not all query logs have the
same number of queries. The total number ranges be-
surements show that Spyglass is effective at limiting thween 100 and 300 queries. All queries in a log are re-
search space and disk access because it can leveraggléyed in the order they appear in the trace file. We find
spatial locality existing in storage metadata. 3x to 5x performance differences between System X and
System Y in our experiments. We believe this is due to the
differences in how each chooses query plans, resulting in
the occasional use of table scans.
In this experiment, we compare how metadata selectivityFigure 11 compares the total run times of each query
influences the performance of Spyglass and the DBM$sg on each trace. For the first query log, Spyglass is be-
We again generate query logsedt andowner from the tween 3.5x and 18x faster than the DBMSs. This is be-

Figure 10: Comparison of Selectivity | mpact. The selectivity of

5.25 Selectivity Impact

11

320336 119149
10396 33279 T113244 T114260
A A A A

10000
. B Spyglass
‘g’ 8000 - M System X
£ System Y
=
= 6000 —
=}
x
2 4000
—
£ 2000 -
[1098576 919 918

o 160 182 13 454,400 8
Log 1 Log 2 Log 3 Log 1 Log 2 Log 3 Log 1 Log 2 Log 3

Web Eng Home

Figure 11: Macrobenchmark Run Times. We show the time required to run each macrobenchmark queryHach query log

is labeled 1 through 3 and are clustered by trace file. Barg thdend beyond the plotting area are labeled with an arrove W
find Spyglass outperforms the DBMSs on all query logs, eslbethe second and third query logs. This is because thexinde
partitioning in Spyglass can significantly narrow the séaspace.

» 1 fk_z’é;di” %) 1 (P [1 (o

Q ' Q Q e

> R =] ’ > -

© 06 , © 06 7 © o6

o K o o

.5 0.4 R .5 0.4 ; '5 0.4 (

g02{ g o2 et g 027/

Y — — ‘ ool — ‘ i — :

100msls 5s 10s 25s 100s 100msls 5s 10s 25s 100s 100msls 5s 10s 25s 100s
— Spyglass -~~~ System X SystemY —— Spyglass---- System X SystemY —— Spyglass---- System X System Y

Query Execution Time Query Execution Time Query Execution Time
(a) Query log 1. (b) Query log 2. (c) Query log 3.

Figure 12: CDFsof Macrobenchmark Query Execution Times. For each query log, we show a CDF of query execution times for
the Eng trace. In Figures 12(b) and 12(c) all queries are extely fast because these query logs include a file path jtedibat
allows Spyglass to narrow the search to a few partitions.

cause Spyglass is usually able to narrow the search tozsoo

g 1
small number of sub-tree partitions. Figure 12(a) shows 400 /./ §=,3’ 0.8
the CDF of query execution for this query log on the Eng= 3q9 & 06
trace. We see that 54% of Spyglass queries have an exg-»og S o4
cution time less than 100ms. This shows that the quer% 100 2 02
execution hits the partition cache most of time and ha& . g ol
very few or no disk accesses. However, we see that the o 1 2 3 ims 10ms100ms 1s 10s
curve tapers. This is because a number of queries either Number of Versions Query Execution Time
access many partitions that are not in the cache or access(a) Total run times. (b) CDF of run times.

more partitions than the cache can hold.) N o
Figure 13: Partition Versioning Performance. The total run

For the second and third query logs, we find that Sptime of the 500 queries increases 10% for an additional incre
glass significantly outperforms the DBMSs: thi@eers mental index. The overhead is caused by only a few queries.
of magnitud€> 1000x) in some case. The key reason for
the improvement lies in the hierarchical partitioning. Tha few sequential disk accesses if the partitions are not in
hierarchical nature of the Spyglass index allows sub-trég$he. In summary, Spyglass exploits the locality proper-
of the hierarchy to be quickly searched, without the netigs of both the metadata and queries to reduce the overall
to process or traverse other locations. These query I§§&rch space, allowing it to scale in large-scale storage
use path as a predicate, which allows Spyglass to ofKstems.
search sub-tree partitions below the path. Figures 12(b)
and 12(c) demonstrates this witr_] a CDF of query tim§4 Partition Versioning
on the Eng trace. Almost all queries finish within 100 ms.
This is because the search space is often narrowed to aft/now look at the performance overhead of partition ver-
a few sub-tree partitions ensuring a worst-case scenarisiohning. We use the full baseline Web trace and its three

12

incremental traces, which are the metadata changes inthe Future Wor k
three days following the baseline. We use this data to gen-

erate a query log using the same method discussed in Sgfus far, Spyglass has addressed scalable metadata
tion 5.2.4. Figure 13(a) shows the query log’s runningarch, however, there are a number of important data
time with no incremental indexes (just a baseline indeyjanagement aspects not yet addressed. Two that we plan
and with one, two, and three incremental indexes. We $8€ook at in the future are query language and security.
that each incremental index adds a 10% overhead to Meﬁ’ective query |anguage is important for the System’s
total running time, which scales linearly. Figure 13(bysability, however, a number of important queries, such as
which is a CDF of query execution time, shows thafme-traveling or trend queries, do not map well onto ex-
the 10% overhead is not evenly distributed amongst f&@ing languages, such as SQL. We believe a specialized
queries. We see that the distribution of query executigiiery language, like our indexing structures, can provide
time is very close for all curves. This is because versiogignificant benefit over existing tools. Security is also im-
ing adds very little overhead when the sub-tree partitionggrtant for usability because it must not leak information
already cached. Cache hits require only microsecondsd® user about the contents of the storage system that they
query an incremental index. However, cache misses Mg not authorized to see. However, since access control
read the partition index and all of the incremental indEXﬁﬁf"e Systems is often at the granu|arity of sub-trees, Spy-

from disk. Figure 13(b) shows that for most queries, ovejtass can leverage hierarchical partitioning to improee th
head is very low. For the few queries that require a numhghe spent performing security checks.

of disk accesses, Qverhead mcrea_ses,_whlch accounts fQfe view Spyglass as a first step towards enabling users

the 10% overhead in the total running time. and administrators access to their data beyond traditional
directory browsing mechanisms. We plan to look at how
to integrate scalable file content search into large-scale
storage systems. We also plan to look at how information
beyond a file's metadata and content, such as relationships

6 Related Work with other files, can be integrated into the storage system.

As the amount of data in storage systems has grown, more)
work has focused on effectively managing it. Past r& Conclusions
search focused on semantic data search [5, 11,13, 15, 27]

an_d more recently, extracting and searching semantic ffanaging and organizing data has become much more
Iat|_0nsh|ps, such as context [30] and provenance [2_2’ 28kicult, for both storage users and administrators, as sto
Using search to manage storage has also found its @it systems have begun storing much more data. In this
into available products [2,12, 17,20, 21]. However, muglyner, we argued that the ability to search file metadata
of this work has been focused on content search. Whigs the potential to address a number of these problems.
useful, content search only provides the ability to locatarching file metadata allows users and administrators
files based on content keywords. As a result, it lacks Mafyquickly gather information about storage that improves
important queries offered by metadata seqrc_h. Some WRHy they manage data. We showed that metadata has
does address metadata search, though it is often lefiian spatial locality and skewed distributions, limitifgt

general-purpose DBMS systems, which are ill-suited §9arformance and scalability of existing solutions that use
lutions. We believe Spyglass addresses a key compongghss.

of effective data management and can be use to aid exis

_ Yo address this issues, we developed Spyglass: a fast,
ing content search systems.

scalable system for searching metadata in large-scale stor
Spyglass also follows in the spirit of the database comge systems. Spyglass uses novel indexing techniques that
munity that “one size fits all” DBMS solutions do nofpartition the index based on the file system hierarchy to
work [6, 32]. This paradigm argues that the best data maaxploit locality of metadata values and applies signature
agement solutions are those designed specifically for files to quickly prune the query search space. Spyglass
problem at hand, which has produced new database dlso includes a novel index versioning method to allow
signs, such as H- and C-stores [31,33]. However, datdex updates and queries based on index history. An
management in storage systems has largely ignored thialuation of our Spyglass prototype shows that it can
idea. We feel Spyglass is a first step towards making dataperform DBMS solutions with respect to time-space
management and search primary a component of the sterhead, update time, and query performance, reducing
age system by showing performance and scalability camery time by up to three orders of magnitude for some
be achieved with specialized designs. macrobenchmarks while only consuming 10% of the stor-

13

age space compared to traditional DBMS-based metadati A. Guttman. R-trees: a dynamic index structure for spa-
indexing techniques.

Acknowledgments

[15]

This work was supported in part by the Department of
Energy under award DE-FC02-06ER25768 and indus6]

trial sponsors of the Storage Systems Research Center

at UC Santa Cruz, including Agami Systems, Data Do-
main, Hewlett Packard, LSI Logic, NetApp, Seagate, afy)
Symantec. We would also like to thank our colleagues
in the SSRC and NetApp's Advanced Technology Grolff]
for their insightful feedback, which greatly improved the
quality of the paper.

[19]

References

(1]

[2] Apple.

(3]

(4]

(5]

(6]

(7]
(8]

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch20]
A five-year study of file-system metadata. Rroceedings

of the 5th USENIX Conference on File and Storage Ted#1]
nologies (FAST)USENIX Association, Feb. 2007.

Spotlight Server: Stop searching, start find22]
ing. http://ww. appl e. com server/ macosx/
features/spotlight/,2008.

J. L. Bentley. Multidimensional binary search treesdise
for associative searchingCommunications of the ACM [23]
18(9):509-517, 1975.

B. H. Bloom. Space/time trade-offs in hash coding with
allowable errorsCommunications of the ACM3(7):422— [24]
426, 1970.

C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and
S. Potti. A file system for information management. In
Proceedings of the International Conference on Intelligefi25]
Information Management Systervarch 1994.

E. Brewer. Readings in Database Systernhapter Com- [26]
bining Systems and Databases: A Search Engine Retro-
spective. MIT Press, 4th edition, 2005.

IBM DB2 Universal Database Administration Guide: Im-
plementation2000. [27]
C. Faloutsos and S. Christodoulakis. Signature files: An
access method for documents and its analytical perfor-
mance evaluation.ACM Trans. on Information Systems

2(4):267-288, 1984. [28]

[9] V. Gaede and O. Gunther. Multidimensional access meth-

[10]

[11]

[12]

[13]

ods.ACM Comput. Sury30(2):170-231, 1998.

G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit groupings: Exploiting disk bandwidth for small[29]
files. In Proceedings of the 1997 USENIX Annual Tech-
nical Conferencegpages 1-17, Jan. 1997. [30]
D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
O'Toole, Jr. Semantic file systems. PRroceedings of

the 13th ACM Symposium on Operating Systems Princi-
ples (SOSP '91)pages 16-25. ACM, Oct. 1991. [31]
Google, Inc. Google Desktop: Information when you want
it, right on your desktop. htt p://ww. deskt op.
googl e. cont , 2007.

B. Gopal and U. Manber. Integrating content-based sxce
mechanisms with hierarchical file systemsPhoceedings

of the 3rd Symposium on Operating Systems Design dR3@]
Implementation (OSD/pages 265-278, Feb. 1999.

14

tial searching. IrProceedings of the 1984 ACM SIGMOD
International Conference on Management of Dgtages
47-57, Boston, MA, 1984.

D. R. Hardy and M. F. Schwartz. Essence: A resource
discovery system based on semantic file indexing?rio
ceedings of the Winter 1993 USENIX Technical Confer-
ence pages 361-374, San Diego, CA, 1993.

D. Hitz, J. Lau, and M. Malcom. File system design for
an NFS file server appliance. Rroceedings of the Winter
1994 USENIX Technical Conferengmges 235-246, San
Francisco, CA, Jan. 1994.

Kazeon. Kazeon: Search
http://www.kazeon.com/, 2008.

O. Laadan, R. A. Barratto, D. B. Phung, S. Potter, and
J. Nieh. DejaView: A personal virtual computer recorder.
In Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP 'Qppges 279-292, 2007.

A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and analysis of large-scale network file sys-
tem workloads. IProceedings of the 2008 USENIX An-
nual Technical Conferen¢®oston, MA, 2008. USENIX.
metaTracker. metatracker for linux.
http://www.gnome.org/projects/tracker/, 2008.

Microsoft, Corp. WInFS: What's in store.http://

bl ogs. nsdn. coni wi nf s/, 2006.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systemsPrda
ceedings of the 2006 USENIX Annual Technical Confer-
ence Boston, MA, 2006.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The
Grid File: An adaptable, symmetric multikey file structure.
ACM Trans. on Database Systerfi§l):38-71, 1984.

M. A. Olson. The design and implementation of the
Inversion file system. InProceedings of the Winter
1993 USENIX Technical Conferengmges 205-217, San
Diego, California, USA, Jan. 1993.

R. Ramakrishnan and J. Gehrk®atabase management
systemsMcGraw-Hill, 3rd edition, 2003.

J. T. Robinson. The K-D-B-tree: a search structure for
large multidimensional dynamic indexes. Pmoceedings

of the 1981 ACM SIGMOD International Conference on
Management of Datgpages 10-18, 1981.

S. Sechrest and M. McClennen. Blending hierarchicdl an
attribute-based file naming. Proceedings of the 12th In-
ternational Conference on Distributed Computing Systems
(ICDCS '92) pages 572-580, Yokohama, Japan, 1992.

S. Shah, C. A. N. Soules, G. R. Ganger, and B. D. No-
ble. Using provenance to aid in personal file search. In
Proceedings of the 2007 USENIX Annual Technical Con-
ference Santa Clara, CA, 2007.

H. A. Simon. On a class of skew distribution functions.
Biometrika 42:425-440, 1955.

C. A. N. Soules and G. R. Ganger. Connections: Using
context to enhance file search. Pnmoceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP
'05), pages 119-132, Brighton, UK, 2005.

M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’'Neil,
P. O'Neil, A. Rasin, N. Tran, and S. Zdonik. C-Store: A
column oriented DBMS. IfProceedings of the 31th Con-
ference on Very Large Databases (VLDBages 553-564,
Trondheim, Norway, 2005.

M. Stonebraker and U. Cetintemel. "One Size Fits All™:
An idea whose time has come and gone.Phoceedings

the enterprise.

[33]

[34]

of the 21st International Conference on Data Engineering
(ICDE '05), pages 2-11, Tokyo, Japan, 2005.

M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era (it's time for a complete rewrite). Proceedings of the
33th Conference on Very Large Databases (VLOR)yes
23-28, Vienna, Austria, 2007.

N. Yezhkova, D. Reinsel, R. Villars, R. Gray, and B. Nis-
bet. Worldwide disk storage systems 2007-2011 forecast:
Mature, but still growing and changing. Technical Report
doc-206662, IDC, 2007.

15

	ssrctrcover
	osdi08-indexing

