POTSHARDS: Secure Long-Term
Archival Storage Without Encryption

Technical Report UCSC-SSRC-06-03

Mark W. Storer Kevin Greenan Ethan L. Miller
mstorer@cs.ucsc.edu kmgreen@cs.ucsc.edu elm@cs.ucsc.edu
Kaladhar Voruganti

kaladhar@us.ibm.com

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064
http://ww. ssrc. ucsc. edu/

September 27, 2006

POTSHARDS: Secure Long-Term Archival Storage Without
Encryption

Mark W. Storer Kevin Greenan Ethan L. Miller
mstorer@cs.ucsc.edu kmgreen@cs.ucsc.edu elm@cs.ucsc.edu

Kaladhar Voruganti
kaladhar@us.ibm.com

Abstract HIPPA, have placed strict demands on the preservation

Modern archival storage systems either store data in §fif retrieval properties of storage systems. Beyond the
clear, ignoring security, or rely on keyed encryption to ef€latively short (for archival purposes) lifetimes entedc
sure privacy. However, the use of encryption is a majBY such legislation, there is mformatlon that must last at
concern when data must be stored an indefinite period@#St @s 1ong as the owner's lifetime. For example, many
time—key management becomes increasingly difficult g_gedlc_al records, legal documents,_ corporate re_cords,_ and
file lifetimes increase, and data loss becomes increasinr%@to“Cal data must be preserved indefinitely with a high
likely because keys are a single point of failure and losiffg9ree of security.
akey is comparable to data deletion. Moreover, traditionalTo address the many security requirements for long-
systems are subject to the obsolescence of encryptionteim archival storage, we designed and implemented POT-
gorithms themselves, which can expose petabytes of d3ARDS (Protection Over Time, Securely Harboring
the instant a cryptographic algorithm is broken. And Reliably Distributing Stuff). The key ideas in POT-
To address these concerns, we developed PGHARDS are the use skcret splittingechniques to dis-
SHARDS, an archival storage system that addresses tfieute data across independent authentication domains
long-term security needs of data with very long lifetimeand the use of multiple levels of secret splitting and ap-
without the use of encryption. POTSHARDS separat@goximate pointers to hide the relationship between the
security and redundancy by utilizing two levels of secrégsulting pieces. By providing data secrecy without the
splitting in a way that allows the original data to be recomtse of encryption, POTSHARDS is able to move security
structed from the stored pieces. However, the data strifeém encryption to the more flexible and secure authen-
tures used in POTSHARDS are also designed in suclication realm; unlike encryption, authentication neetl no
way that an unauthorized user attempting to collect sie done by computer, and authentication schemes can be
ficient shares to reconstruct any data will not go unnéasily changed in response to new vulnerabilities.

ticed because it is very difficult to launch a targeted at- Archival storage exhibits a write-once, read-maybe us-
tack on the system, even with unrestricted access to a fgyé model, in contrast to more active storage that is read
archives. Since POTSHARDS provides secure storagefi@re frequently than written. This access model, in com-
arbitrarily long periods of time, its data structures ir8u bination with potentially indefinite data lifetimes, prese
built-in support for consistency checking and data migrerany novel storage problems [2]. Long-term archives
tion. An evaluation of our POTSHARDS implementawill experience many media and hardware changes due
tion shows that it stores and retrieves data at 2.5-5MBys,failure and technological advances, but data must be
demonstrates its ability to recover user data given all gfeserved across this evolution. Solutions that suffice for
the pieces a user has stored across the archives, and ské\wg-term applications begin to degrade as timeframes
its ability to recover from the loss of an entire archive. move from months to decades. For example, the man-
) agement of cryptographic keys becomes difficult as data
1 Introduction may experience many key rotations and cryptosystem mi-
The capabilities of current archival storage facilitieg lagrations over the course of several decades.
behind the flood of data that must be archived in digi- The long-term use of encryption in archives is a major
tal form. Recent legislation, such as Sarbanes-Oxley arahcern for a number of reasons. First, there is a high

chance that, over the course of many years, users will
frequently lose their encryption keys, and key 10Ss is 0f- ey
ten equivalent to data deletion. Second, encryption keys

can be stolen, potentially compromising large quantities

of archived data. Both of these issues affect all of the data
._h.

|
-

that was encrypted using a particular key. Third, encryp-
Client

tion standards may change over the course of many years, ;
*M i Transformation

“brute-force” an algorithm and because algorithms can be
compromised by cryptanalysis. Fourth, long-lived data
may require many key rotations over its lifetime. Ad-
dressing the issue often raises the recurring problem of
migrating large amounts of encrypted data to new encryp-
tion keys or even new encryption algorithms. While re-
encryption may be straightforward for small amounts of

data, migrating petabytes of data in response to a com-
promised encryption algorithm is very difficult and either

requires active user participation or allowing the archive ; o

. . . . acemen]
to know the key used, neither of which is attractive for ' =" | Placement
long-term secure storage. These and similar issues will L 1
likely be encountered over the long data lifetimes found
in the archival storage realm. AUTHENTICATION

The design of POTSHARDS includes three novel as- ===%--=- e e
pects that make it well-suited for usage as a secure
archive. First, POTSHARDS uses secret splitting and ap-

roximate pointers as a way to move security from ep-
P . P L Y . . y Eigure 1: Overview of the POTSHARDS archival storage sys-
cryption to authentication and to avoid reliance on encryp.

. . . em. The arrows in this diagram point down, corresponding to
tion algorithms that may be compromised at some pol gram p P g

.) : e ! ta being ingested. For data extraction, the arrows (ated da
in the future—unlike encryption, secret splitting prO\Bdef,OW) point up towards the user.

information-theoretic security. Second, each user main-

tains a separate, recoverable index over her data, sstrated the ability to reconstruct a user’s data from all of
compromised index does not affect the other users anthe user’s stored shares. These experiments demonstrate
lost index is not equivalent to data deletion. More impothe system’s suitability to the unique usage model of long-
tantly, in the event that a user loses her index, both the tarm archival storage.

dex and the data itself can be securely reconstructed from

the user’s shares stored across multiple archives. H@®v- Architecture Overview

ever, this reconstruction requires an exponential num%TSHARDS was designed to provide long-term secure

of shares_because only the data owner knows the ex%%lﬁival storage that avoids the use of encryption. Thus,
relationship between the shares. An attacker must use R

.) .) iRl important to describe the long-term threats that POT-
proximate pointers to identify sets of shares to retrievg, \pps attempts to guard against. POTSHARDS uses

an? !”'C':E/ "."Stse”?b'e 'I?rl:' gf gg_lr%'_"v:g%ust any arCh'.\t/?hree techniques to counter these threats: secret splittin
noticing the intrusion. Third, USes awn e"[echnique that, unlike encryption, provides information

once RAID technique across multiple archives to prOVI(?ﬁeoreticallyprovablesecurity; approximate pointers that

redunglan_cy, dgta_m|grat|on,_ recoverability and Integrlf'}fde direct relationship between pieces of stored data; and
checking in a distributed environment. separation of archives into distinct authorization doreain
We implemented POTSHARDS in 15,000 lines of Java, The POTSHARDS model assumes a relatively sta-
and conducted several experiments to test its performabtz environment in which the barrier to entry for a new
and resistance to failure. POTSHARDS can read aacthive would be relatively high because it would need to
write data at 2.5-5MB/s on commodity hardware, ardémonstrate that it could provide a certain level of ser-
survives the failure of an entire archive with no data lossce. POTSHARDS is not designed as a loosely feder-
and little effect seen by users. In addition, we demoated peer-to-peer service; rather, each archive shoutd hav

both because of the advances in computational ability to

Redundancy

Archive

\
i
i
i
i
i
]
]

(Archive’ (Archive’ i Archive !

an incentive to take an active role in preserving its owhe data may no longer be available, and the credentials
stability and security while actively questioning the stamay be lost as welli{ e, perhaps the user has died).
bility and security of the other archives. However, singgrchival storage systems must be able to produce data if a
POTSHARDS must survive for decades, it is a given thparty provides sufficient authorization; “we lost the key”
the overall system will undergo constant change as teéhnot an excuse for denial of service.
nology improves. The design of POTSHARDS, shown Intrusion detection is more challenging in archival
in Figure 1 makes it easier to accommodate these incggstems because the long data lifetimes that such sys-
mental changes in two key ways. First, the system is dems must support provide attackers with much longer
signed as a series of modules. A modular design allowidows during which they can attempt to compromise
each component to be optimized for a specific task. Secsystem’s security. Traditional intrusion detection in-
ond, communication between components is performelddes techniques that compare audit data and network
through well-defined interfaces using a small number aétivity to a database of known attacks. However, an at-
request and response message types. tack that is methodical enough to make only the slightest
The remainder of this section will discuss the threaf changes at any one time and space each step far enough
model that long-term secure archives such as PGpart would be difficult to detect by traditional signature
SHARDS must face (Section 2.1), and the data organiraatching algorithms. For example, an attack that required
tion that POTSHARDS uses to combat these threats (Sen-ntruder to break into a system to steal twenty pieces of
tion 2.2). The software structure and organization of tliata would likely be caught if the attack occurred during

system itself is discussed in Section 3. a two day period, but would be almost certainly be missed
if the attack took place over two decades.
2.1 Threat Model Maintaining integrity is likewise more difficult be-

| q v desi ¢ hi ca}use of the relatively short lifetime and limited reliatlyil
n order to properly design a system for secure archiv!y,» jitional storage components, causing problems with

storage, it is necessary to identify the unique threats Sta degradation over the data’s lifetime, which greatly
suc_h I_ong-term storage systems. Shome Ef these threats.gie e 4 individual component lifetime. Integrity guaran-
variations on common concerns that take on new meglia iy olve two distinct issues. The first is the internal

ing in the area.of archival storage, Wh|_le others are n‘?M\fegrity problem of data within an archive becoming cor-
threats that typically do not affect traditional Storage-syy hieq by media failures and silent read errors. The sec-

tems. Adequate understanding of these threats is es , found in distributed storage systems, is the external

tial to effectively devise new policies and mechanisms ﬁ(?tegrity challenge. Each archive must have a method of

guard against them. We will focus on threats to the S(?ﬁsuring that the other archives in the distributed system

curity of the long-term archive; more conventional threa(tjﬁe behaving properly. This problem has been addressed
are descrlped elsewhere [2]. for public data [9,17], but not for secure storage. Due
Secrecy in long-term storagepresents a complex chaly, the |ong lifetimes of archival data, long-term storage
lenge. In an archival storage system, data can be VE@iems will witness events that require data to be moved
difficult to reproduce. The software, hardware and evgyyeen archives. The reasons for this change could in-
users that produced the data may no longer be avgjijqe the inevitable failure or obsolescence of hardware,
able. Thus, secrecy techniques must adequately bal em updates and possibly even data movement as a se-

the need for secrecy and the unrecoverable nature of fity factor. A long-term system must thus be immune to
data. Additionally, although the usage model of storage, 5ilure or reliance of any given component.
is write-once, read-maybe, users must still be able to find

the data they stored should they desire to read it. If a use.
is unable to locate and retrieve his data from an archiva
system, the availability aspect of security has been viData inserted into POTSHARDS goes through multiple
lated. layers of a software stack to distribute information in such
Authentication and data availability in long-termse- a way that an attacker cannot easily reconstruct the data,
curestoragealso presents problems not typically encoums shown in Figure 1. Data at the top level consisfgext
tered in shorter-term storage systems. If the storage sykich are the entities that clients submit to the system
tem plans on providing file secrecy as part of securitigr preservation. Files are broken into fixed-size blocks,
users must be able to authenticate themselves to the sylsich are converted intb-byte objectsby appending the
tem as a first step in authorization. A challenge in longecure hash of the underlying block and the ID of the ob-
term secure storage is that the user primarily attachedeot. Objects are then split infoagmentsusing an algo-

Data Entities

Shardy,

Shardy,

Shardy,

Shardyg

Shard,,

Shard,, Shard,g

Figure 3: Approximate pointers and shard relationships. In
this diagram, each approximate pointer pointfkte 4 possi-

ble shards. Fragment O can be reconstructed by following the
links for shardy . If an intruder mistakenly picks shard he

] L\ L will not discover his error until he has retrieved the enginain
\Archive 0) \Archive 1)) (Archive2/ \Archive 3 and attempted to verify the reassembled fragment.

e

.

Shard X @ Shard Y © Shard, Redundancy group . . .
storage needed; compressed data is handled just like any
Figure 2. The relationship between objects, fragments, a’E’ﬁ’hertype of data.

shards in POTSHARDS. Archive-level redundancy, described

Section 3.3.3, is done across unrelated shards. The only information a shard contains to link it to other

shards of the same fragment is approximate pointer
Each shard has an approximate pointer to the next shard
rithm optimized for secrecy with little regard for redunin the fragment, and the last shard points back to the first,
dancy. Currently, POTSHARDS uses an XOR-based $@mpleting the cycle, as shown in Figure 3. In contrast
cret splitting algorithm for this stage, which producesto traditional pointers that contain the exact identifier of
fragments, each of whichsbytes long. In addition to the the object pointed to, an approximate pointer points to a
data needed to reconstruct the object, each fragment aeirgeof potential identifiers. This can be implemented in
tains information used to reconstruct the fragment frovo ways: randomly picking a value withir/2 above or
the shardsinto which the fragment is broken. The relabelow the next shard’s identifier, or masking off the low-
tionship between objects, fragments, and shards is shawderr bits (R = 2") of the next shard’s identifier, hiding
in Figure 2. the true value. Currently, POTSHARDS uses the latter ap-
Shards are the basic entity stored in the archives, apthach; we are investigating the tradeoffs between the two
in this version of POTSHARDS, are generated from fragpproaches. When shards are created ef#ta&tnames
ments using am/n secret splitting algorithm [22, 28]. Inof the shards are returned to the user. Typically, a user
secret splitting, a secret is distributed by splitting tbim maintains the relationship between shards, fragments, ob-
set numben of shares such that no grouplo& mshares jects, and files in an index to allow for fast retrieval, as
reveals any information about the secret; this approadescribed in Section 3.2; however, these exact pointers
is called an(m,n) threshold scheme. In such a schemarenot stored in the shards themselves, so they are not
any m of the n shares can be combined to reconstrugyailable to someone attacking the archives.
the secret, but there are information-theoretic proofs thaThe use of approximate pointers provides a great deal
combining fewer thamm shares revealso information. of security by preventing an intruder who compromises
Thus, splitting fragments using an/n scheme results inan archive from knowing exactly which shards to steal
n shards that each containbytes of data. Shards confrom other archives. An intruder would have to stakl
tain no information about the fragments that make thewofithe shards the approximate pointer could refer to, and
up; as a result, an attacker who compromises an archiveuld have to steal all of the shards they refer to, and so
cannot gain information about the data being stored on. All of this would have to bypass the authentication
the archive other than its source, which can, if desired, lmechanisms of each archive, and archives would be able
further hidden using onion routing [10] or similar techto identify the access pattern of a thief, who would have
nigues. Note that, because of the two-level secret sptit-steal consecutively-numbered shards from an archive.
ting, the overall storage requirements for the system &imce partially reconstructed fragments cannot be verified
relatively high; a 2-way XOR split followed by a/3 se- the intruder might have to steall of the potential shards
cret split would increase storage requirements by a fdc-ensure that he was able to reconstruct the fragment. For
tor of six. However, users can easily submit compressexample, if an approximate pointer pointsRehards and
archival data [34] to be stored, reducing the amount affragment is split using/n secret splitting, an intruder

would have to steal, on averag®}!/2 shards to decodesplitting algorithms used in POTSHARDS. For secret-
the fragment. splitting techniques that rely on linear interpolation],28

A legitimate user who has access to all of his shardg,e order of the secret shares is an input to the reconstruc-
on the other hand can easily rebuild the fragments af{@n @lgorithm. Thus, knowing the order of the shards in
from them, the objects and files they comprise. Recd¥fing can _grgatly reduce the time taker7 to reconstruct the
ery of the user’s data is based on approximate point8RSTet. This is currently done by ensuring that the shards
located within the shards, as shown in Figure 4. Oncdh@t make up a fragment have identifiers that follow the
user gains all of the necessary shards, there are two br§fards’ input order to the reconstruction algorithm.
force approaches to regenerating the fragments encoded
into shards usingy/n coding. First, a user could try every3 System Design
possible chain of lengtm, rebuilding the fragment and] .
attempting to verify it. Second, a user could narrow thehis section describes Fhe spftware structure of POT-
list of possible chains by only attempting to verify chaing#ARDS and the archives it uses. Both the POT-
of lengthn that represented cycles, a process we call tREVARDS and archive sections discuss the components
ring heuristic The Shamir secret splitting algorithm ighat make up the system and their relationships to one
computationally expensive, so combining a set of sharother, and the flow of information through the compo-
that do not produce a valid fragment is expensive. TRENtS. The archive description is separate from the POT-
ring heuristic reduces the number of failed reconstructigf*ARDS design because the internal archive design is
attempts in two ways. First, the number of cycles of lengt@fgely orthogonal from the rest of POTSHARDS.
nis lower than the number of paths of lengtisince many
paths of lengtm do not make cycles. Second, reconstrud.1 POTSHARDS Components and Data Flow

:Ir?nt ;Jhsmghthe Sk?amw setl:ret Zp“tt';g a:]:gorltt[l_m requI_rteﬁs Figure 1 shows, POTSHARDS consists of three pri-
at the shares be properly ordered and positioned wi ry layers: transformation, placement and archive. Lay-

the.share list Thopgh the shard l.D pr_owdes-g na}tural s communicate with one another through a request and
dering for shards, it does not assist with positioning.

o
. ponse message protocol. Request messages travel
exa".‘p'e’ suppose the shards were produced with a d8?/vn the stack from the client application to the archives
5 split. A chain of three shardés;, s, s3), would poten-

dall dtob bmitted to th splitti I _thand response messages travel back up the stack. Re-
lafly need 1o be submitied to the Secret Spiiting aigon quests start at the top of the stack with the client applica-
three times to test each possible ind€si,s,,ss, @, @),

d As Fi 2l tion. Below this is the transformation layer, which takes
(0.51,%,%,¢), and(,,51,%,53). As Figure 4 illus- those blocks of data and, utilizing secret splitting, pro-

trates, fragments include a hash which is used to CQjiaaq ot secrecy and user-level redundancy. The next
firm successful reconstruction. Fragments also mclude‘ e

identifier for the object from which they are derived, malii-,[yer is responsible for placement, accepting the data en-

: S . . . lties to store in the system and distributing them to the
ing the combination of fragments into objects a Stra'ghe{'rchive layer

forward process. An evaluation of the two approaches tOEach archive in POTSHARDS can exist within its

select chains to verify is discussed further in Section 4.2. . o o
own security domain with its own authentication scheme.

All data entities are given 128-bit identifiers; objectshough POTSHARDS is distributed, it is different from
fragments and shards all have unique names within i@ ny peer-to-peer systems in that archives do not join and
system. The first 40 bits of the name uniquely identify theaye the system frequently. Furthermore, each archive is
client in the same manner as a bank account is identif'@gpected to ensure its own stability and integrity while
by an account number. The remaining 88 bits are usedyigively auditing the stability and integrity of its partne
identify the data entity. Object IDs and fragment IDs dgrchives. Archive internals are further described in Sec-
not play a role in the security of the data, so their namggn 3.3.
can be generated simply. In contrast, the time to recovefne modular design and communications model allow
objects from a set of shards is directly related to the degifarge degree of flexibility in where the layers reside and
sity of the shards’ names—higher densities make recovefn allow multiple users to share a single instance of
slower and allow shards to “hide” amongst more Shardqsiayer. One model that provides a high degree of se-
Thus, shards’ IDs must be chosen with greater care to g[}sity is to place the client application, transformation
sure a high density of names to provide sufficient securig(yer and placement layer on the user’s local computer. In

In addition to uniquely identifying data entities withirthis manner, the user’'s unsecured data is never transmit-
the system, IDs play an important role in the secrded over an open communications channel. Alternatively,

Module | Input Output Object

Pre-processing block object 160 128 remainder of object ... :I
]

Secrecy split| object set of fragmentg | MAC |°bie°t'D| Block

Redundancy splif fragment| set of shards ‘ l

. . 0 ragment
Table1: Transformation layer modules and their inputs and ol 8 108 # 128 128 160

puts. e e e e

. . L
network communications can travel over SSL-encrypted

I
links, providing strong security for data in transit. *
The user communicates with POTSHARDS throughsahi';g g |
client application, which has three primary tasks. In thehardiD | Z‘;%'t"e’; | shard payload]

ﬂ.rSt task file |nges_t|0r,1the C_“ent breaks the file into flXed'FiIgure 4: Data entities in POTSHARDS. Size, in bits, is indi-
sized blocks, adding padding on the end of the last bIocI% ted above each field. Note that entities are not shown te sca

necessary. The client then submits these blocks to the S¢gative to one another. # is the number of shards that the fra
tem as a storage request. If successful a storage respefs® produces

contains the information needed to map shards to blocks.
The second task of the client is to request blocks from thée fragment also contains metadata that can be used to
system. Extraction is based on the block to shard mappidgntify the shards that it produces as well as the object
contained within an index maintained by the client. Réhat it was derived from.
quests for shards travel down the stack along with infor-The third phase produces a set of shards and is based
mation needed to reconstruct the block. As the resporseShamir'sm/n linear interpolation secret splitting al-
travels back up the stack, the block is reconstructed. T¢erithm [28]. This layer is tuned for user-level redun-
third task of the client is to manage the user’s index to prdancy, and provides security over the fragment's meta-
vide the shard identifiers used to retrieve blocks from tldata. User-level redundancy is used to provide availgbilit
system. This task, described in detail in Section 3.2, iim-the event that an archive is unavailable during extrac-
cludes constructing index pages, submitting pages to tlan. The only metadata that shards contain are an identi-
system for storage and requesting index pages from flg& and an approximate pointer to another shard. Thus, a
system. The first two tasks are required tasks for PO®ne shard does not reveal any information about the ob-
SHARDS; however, the third task is optional—the usggct thatit is used to rebuild, the exact ID of the next shard
can choose to maintain the index locally and not storeoit even the location of the next shard.
in the archive. The placement layer receives sets of shards from the
Thetransformation layer is responsible for encodingtransformation layer and is responsible for two tasks. The
data during ingestion and reconstruction during extrefist is reducing the risk of information leakage. It does
tion. In keeping with the specialized components desiftis by comparing the parameters used to generate shards,
of POTSHARDS, data transformation is accomplished u§€ placement policy and the number of archives. The
ing three distinct phases: pre-encoding, secrecy encodigfond task, if the constraints are met, is to assign shards
and user-level redundancy encoding. The inputs and d@tarchives. The assignment ensures that no two shards
puts to each layer can be seen in Table 1. from a single fragment are placed on any given archive.
The first phase, pre-encoding, produces objects from)
files via blocks. As Figure 4 illustrates, an objectin PO®2 Archivelndex
SHARDS contains a hash over the object ID and objagthile the archival model of storage is write-once, read-
payload. During extraction, this hash can be used to cenaybe, users must still be able to find the data they stored
firm the successful reconstruction of an object. should they desire to read it. Thus, users who store data in
The second phase is tuned for secrecy and involvesRIDTSHARDS should keep an index that stores the map-
n/n secret split using an XOR-based algorithm. It can Ipéng between files and shards, allowing the user to locate
shown that splitting using XOR, in addition to being a rethe shards that are needed to rebuild (via fragments, ob-
atively fast secret splitting technique, results in prdyabjects, and blocks) a given file. The user’s index is similar
secure data secrecy. This transformation phase takestoban encryption key in that it contains the information
jects as input and produces a set of fragments. As Figuneekded to reconstruct the user’'s data. However, unlike
shows, fragments also contain a hash over their contetidsa secured by encryption, a users’s data can be recov-
that can be used to confirm a successful reconstructieredwithoutan index.

Of course, this index is at risk of loss; while data can bisto a separate security-failure domain and intelligently
retrieved without it, its presence greatly simplifies data rplacing the shards across each domain. In addition, the
trieval. Thus, users that store their data in POTSHARD#®chives themselves hold no information about fragment
may also store their indexes in the system. If this is doremd object reconstruction, so a full compromise of a single
the user need only rebuild the index using the algorithanchive gives an adversary very little, if any, information
described in Section 2.2; the rebuilt index can then be ughdt can be used to recover user data. Absent such precau-
to find the shards needed to rebuild any object. This djpns, the archive model would likely weaken the strong
proach has two advantages. First, since each user maecurity properties provided by the other system compo-
tains his own index, if the index for one user is compraents.
mised, it does not affect the security of other users’ data,

Second, the index for one user can be recovered with gl Components
effect on other users. Archives in POTSHARDS are oblivious to the existence

Because the index is recoverable from the data itselfoft files, objects and fragments; their only job is to reli-
is different from using encryption in two important waysably store shards for an extended period of time without
First, the user's index is not a single point of failure like a'evealing any information about client data. Reliability
encryption key. If the index is lost or damaged, it can B@ achieved by requiring all archives to agree on RAID-
recovered from the data without any input from the ownBased methods to ensure whole archive reconstruction in
of the index. Second, full archive collusion can rebuildne presence of failure. In the absence of RAID techniques
the index. If a user can prove a legal right to data, such&@oss the archives, the procedure of archive reconstruc-
by a court subpoena, than the archives can provide allign would involve requesting and scanning user indices,
the user's shards and allow the reconstruction of the da#dich would compromise security and violate the POT-
If the data was encrypted, the files without the encryptisf/ARDS security property of having only a client know
key are effectively inaccessible. However, POTSHARDSe explicit relationships between its shards.
can rebuild the data without the index or any other userRedundancy synchronization is controlled by a set of
input if all of the shards are available. replicatedrecovery managersThis coordination allows

The index for each user is stored as a linked list of indée archives to form coherent, fault-toleraatiundancy
pages with new pages inserted at the head of the list. Siff@UPSwithout disclosing any information about the ori-
the pages are designed to be stored within POTSHARLS) of the |nd|v_|dual shards. Each recovery manager holds
each page is immutable. When a user submits a file!f§ System-wide redundancy group indices. Due to the
the system, a list of mappings from the file to its sharéf@Portance of redundancy information, the recovery man-
is returned. This data is recorded in a new index pag@er is replicated, giving each archive its own recovery
Included in the new page is a list of shards corresporfg@nager. Updates such as archive and storage additions
ing to the previous head of the list. This new page #€ assumed to occur occasionally, so maintaining consis-
then submitted to the system and the shard list returri€gCY across the replicated managers requires a manager
is maintained as the head of the index list. These ind@®roadcastany changes in its index to all other managers
root-shards can be maintained by the client application® the system’s archives. _
even on a physical token, such as a flash drive or smarf\n archive joins the POTSHARDS system by first for-
card. In the event that a user loses her index, she can'>ting all of its available storage into equal-sizttard
thenticate to the archives (perhaps complying with mo#EPups Each shard group contains a hash of its contents,
stringent authentication policies) and retrieve the sha@? D headerand anarray of equal-sized, write-cazed
that belong to her. Once the client’s shards have been &S The hash is used to perform intra-archive integrity
lected, the approximate pointers can be used as hints in¢A8CkS; the ID header contains a map of the shards stored

combinatoric problem of combining shards, as describlgthe shard group; and each fixed-size shard slot con-
in Section 2.2. tains shard data. Next, the archive will advertise all newly

created shard groups to a recovery manager, which will
assign the shard groups to equal-siz@tual disks The
virtual disks are used to create redundancy groups and al-
The architecture of POTSHARDS demands an archil@v for maximum space utilization across heterogeneous
model that preserves the secrecy provided by the otlechives.

components of the system while maintaining the goal of A redundancy group is a set afvirtual disks, parti-
reliable, long-term storage. The system makes both reiéned intop parity disks andh — p data disks. Each re-
ability and security guarantees by arranging each archdiendancy group is constructed with a particular RAID al-

3.3 Archive Design

> > ing a shard group for placement. The shard placement
process consists of three distinct steps. First, a random
shard group is chosen as the storage location of the shard.

Next, the shard is placed in the last available slot in the
|

Archives the shard group. Finally, the corresponding parity groups
Recovery Manager for the chosen shard group are retrieved from the recov-

Redundancy Groups ery manager and the parity updates are sent to the proper

archives. Each parity update contains the data stored in

Ro R, R, R, the slot and the appropriate parity slot location. The fail-
i ; P i ure of any parity update will result in a roll-back of the
.. B B K | parity updates and placemeqt <_)f the shard into another re-
il dundancy group. Although it is assumed that all of the
5 archives are trusted, we are currently analyzing the secu-
data | i data : | data i ! data | rity effects of passing shard data between the archives dur-
: ’ » ' ing parity updates and exploring techniques for preventing
§ g »n archives from accumulating shards to perform brute-force
data__} data_ i data i i _data .
: 5 P data reconstruction.
party | | party | " party | 3.3.3 Rdiability
shard group virtual disk

Figure 5: Shard groups arranged into virtual disks and reduhong-term reliability of user data is provided by the re-
dancy groups. The first virtual disk of groRg shows that shard dundancy groups defined across multiple archives. In the
groups are made of fixed sized shard slots. event of a whole or partial archive failure, the archives
collaborate to reconstruct and re-distribute the contents
gorithm, which has the ability to tolerate apyirtual disk the failed archive. The second, redundant split in the en-
failures. To ensure a prescribed level of archive faunﬂOlQ;oding process gives a user short-term re|iabi|ity' which
ance, a set of constraints based on first-fit bin-pacmng,may be needed during temporary Outages or archive re-
p and the RAID algorithm are used to assign virtual diskgnstruction. In fact, in the general case omlgf n shares
into redundancy groups. For example, providing singdge used when recovering fragments, so it is unlikely that
archive fault tolerance requires that no more than one Virclient will notice any differences during temporary out-
tual disk from a single archive be placed into a RAID jges.
redundancy group, while no more than two virtual disks prchive reconstruction begins with a request to a single
from a single archive may be placed in to a RAID 6 groupacoyery manager. The recovery manager constructs a set
By constructing the redundancy groups in this fashion, (8¢ nessages that contain the instructions for shard group
number of decisions made by the placement layer is sjgzonstruction and where to store the result. Each mes-
nificantly decreased, since placing a set of shards frQyye contains the information required to reconstruct a set
a single fragment among distinct archives is sufficient {g shard groups from the failed archive. A single message
maintain security and reliability. traverses each archive in the failed archive’s redundancy
As virtual disks and redundancy groups are creatgfoyp until the contents of the shard groups are recon-
parity information is propagated to the affected archivegycted. The reconstructed shard groups are then stored at
Each archive will receive a set of shard group IDs Wilfie |ocation chosen by the recovery manager. Each mes-
their newly assigned type (data or parity). The relatiogage contains an entry for each participating archive and a
ship between the virtual and physical entities is shown jjffer that will eventually contain the reconstructed data
Figure 5. An entry consists of an archive address, an operation and
a set of shard group identifiers. Each archive extracts its
entry and performs one of three operatiomsad XOR
During a single client ingestion, an archive placement derwrite. If the operation is a read or an XOR, the shard
cision is made at the placement layer, where each shgrdup identifiers in the entry are used to either read the
is stored at a distinct archive. The placement layer hstsard groups into the data buffer or perform the XOR sum
already divided the shards up into their respective seaithe shard groups and data buffer. If the operation is a
rity and reliability domains; now the archive must placerite, then the current archive stores the contents of the
the shards into redundancy groups by randomly choalsta buffer locally, since it is the fail-over archive.

3.3.2 Information Flow

There are two distinct types of fail-over used to perforstoring data properly [27]. This scheme can be used both
archive recovery. First, an entire archive can be repladed “standard” RAID and for error correcting codes that
by another, newly added archive. In this scenario, the g&n tolerate multiple erasures, such as XOR-based Reed-
covery manager writes all of the reconstructed data to tBelomon. Algebraic signature requests can periodically
new archive and the appropriate information is updatbd made by a recovery manager, where a set of archives
in the redundancy group indices. If a failure occurs amde queried for the algebraic signature of a specific inter-
a new archive has not been added to carry the load, thahof data. Each archive computes its required signature
the recovery manager must decide how to distribute thed sends a response to the requesting recovery manager,
reconstructed data. The target archive used to storewich verifies the correctness of the response. This dis-
constructed data is chosen at virtual disk granularity. Ttrédbuted check ensures that the archives are not simply
reconstructed data must be distributed among the architr@®wing away data and are performing internal integrity
in a way that does not break the fault tolerance providedecks. If an integrity violation occurs, then the recov-
by the redundancy groups. In addition, migrating the daday manager must determine where the violation(s) origi-
from the failed archive to another archive in the systemated. Determining the appropriate position of the viola-
may result in a change of security domain. When pdien(s) is simple if the number of positions is less than or
forming this type of reconstruction, the manager instruasjual to the error correcting capability of the redundancy
the reconstructed virtual disks to migrate as soon as #igorithm. A combinatoric search using more algebraic
failed archive re-joins the system or a new archive joisggnature queries is required if the number of violations is
the system, thus re-placing the recovered data in a shaéyond the error correcting capability of the redundancy
security domain. algorithm.

3.34 Integrity 4 e ' t
Preserving data integrity is a critical threat to all long- Xperiments

term archives. As the age of a system increases, so doke experiments on the POTSHARDS prototype were de-
the chance of data degradation, so POTSHARDS provigigned to show several things: the performance of the sys-
two different forms of integrity checking. The first techtem broken down layer-by-layer, overall system through-
nique requires each of the archives to periodically chepldt as more clients write to the system, the performance
its data for integrity violations using a hash stored in td POTSHARDS in a actual global environment, an anal-
header of each shard group. The second technique igsis of shard reconstruction, and the verification of whole
form of inter-archive integrity checking that utilizes alg archive recovery. Our experiments were conducted on
braic signatures [27] across the redundancy groups in #@TSHARDS running on both a local and distributed en-
system to perform distributed integrity checks. vironment using a variety of workloads appropriate for
Each shard group includes a hash in its header for Iang-term archival storage. The workloads contained a
tegrity checking purposes. It is the responsibility of eachixture of plaintext, PDF, PS and images. The read/write
individual archive to periodically check the integrity operformance numbers reflect the performance of POT-
its data by comparing the hash to the contents of the sh&dARDS during normal operation, while reconstructing
group. Given the immense amount of data that is stored@data from shards and recovery from a failed archive rep-
a single archive, integrity checking can quickly becontesent special cases in system state.
a daunting task [26]. An archive can either perform in- In our experiments, the user’s computer contains the
tegrity scans periodically at some predefined interval client application along with the transformation and
opportunistically before or after a shard group write. Thidacement layers shown in Figure 1. In the local exper-
latter case requires a background process to scan the shraets, these layers were run on systems with two Pen-
groups, while the former case adds the computation ofiam 4 processors running at 2.74 Ghz with 2 GB of RAM.
hash and hash comparison to every shard group updat&he operating system on each was Linux version 2.6.9-
Redundancy groups can be used for purposes otB2r01.1. For local tests, there were sixteen archives, each
than rebuilding failed archives. Using algebraic signesurhosted on systems with two Pentium 4 processors run-
over the virtual disks of a redundancy group, the integrityng at 2.74 GHz. Each system had 3GB of RAM and
of the data can be checked from any archive or a third3 GB of available local hard drive space. The archives
party without giving away too much information aboutvere all running Linux version 2.6.9-34. In all of the local
the data. Algebraic signatures, which have the propetégts, the hosts were located on the same local area net-
that the signatures of the parity equals the parity of therk. To simplify the experiments, the recovery manager
signatures, can also be used to verify that an archiverasm from a single host and propagated parity information

to the individual archives as new updates arrived. The | Ingestion Profile Cluster PlanetLab

PlanetLab [19] experiments were run in a slice that con-| Transformation | time (ms) 1509 2276
tained 12 PlanetLab nodes distributed across the globe. O Layer msgs in 1 1
the 12 nodes, 8 were used as archives and the remainin Request msgs out 1 1
4 were used to run the client application, transformation Placement | time (ms) 37 30609
layer and placement layer. R"ezyferst ng: I(?ut é é
The POTSHARDS prototype system itself con3|sts_ of Archive fime (ms) 57 39109
roughly 15,000 lines of Java 5.0 code. Communica- Layer msgs in 5 5
tions between layers utilized Java sockets over standard Request msgs out 6 5
TCP/IP. The archives used Sleepycat Software’s Berkeley| Response Trip | time (ms) 88 54271
DB version 3.0 for persistent storage of shards. Total Round Trip| time (ms) 1731 95957
4.1 Read and Write Performance [Extraction Profile Cluster _ PlanetLab
The architecture of POTSHARDS is based on a four pri- Shard time (ms) 332 20666
mary components: a client, transformation layer, place- Acquisition msgs 34 34
ment layer and archive layer. Each layer, seen in Figure 1| Transformation | time (ms) 1009 1698
communicates with its adjacent layer through a series of Layer msgs in 1 1
messages. In the current implementation, the client sub-{___Response | msgs out 1 1
mits blocks synchronously, awaiting a response from the| _ Request Trip | time (ms) 28 6493
system before submitting the next block. In contrast, the | Total Round Trip| time (ms) 1843 31414

remainder of the system is highly asynchronous. Tabld@ble 2: Profile of the ingestion and extraction of one block of
profiles the ingestion and extraction of one block of dat@@ta comparing trials run on a lightly-loaded local clustéth

It compares the time taken on an unloaded local clustBg global-scale PlanetLab. Results are the average .ofsa run
of machines and the heavily loaded, global scale Plang 36 blocks per run. Parameters: 2 XOR secrecy split, 2 of 3
Lab. In addition to the time, the table details the number amir redundancy split

of messages exchanged during the request.

As the numbers clearly show, the majority of the time))
on the local cluster is spent in the transformation lay&@Ut required about 6.5 seconds on the PlanetLab frials.

This is to be expected because polynomial generation aBCe request messages are quite small, the difference is
linear interpolation in the Shamir secret-splitting alg&ven more dramatic in the shard acquisition times for ex-
rithm is compute-intensive. Additionally, the local clustraction. Here, moving the shards from the archives to the
ter is interconnected by a dedicated high-throughput, lottansformation layer took only 832 ms on the local cluster
latency network with almost no outside cross-traffic. TH&!t Over 29.5 seconds on PlanetLab.
transformation time for ingestion is greater than for ex- The measurements per block represent two distinct sce-
traction for two reasons. First, during ingestion, thesrannarios. The cluster numbers are from a lightly-loaded,
formation must generate many random values. In futukgll-equipped and homogeneous network with unsatu-
implementations, this could be optimized through the ugted communication channels. In contrast, the Planet-
of pre-generated values. Second, during extraction, tb numbers feature far more congestion and resource de-
transformation layer performs linear interpolation usingands as POTSHARDS contended with other processes
only those shards that are necessary. Thatis, givemn/an for both host and network facilities. However, in archival
secret split, onlyn of the shares are used even ifmtire Storage, latency is not as important as throughput. Thus,
available. During extraction, the speed improvements\ile these times are not adequate for low-latency appli-
the transformation layer are balanced by the time require@fions, they are acceptable for archival storage.
to collect the requested shards from the archive layer. Because the per-block time is roughly equivalent, the
In a congested, heavily loaded system, the time to mateoughput for ingestion and extraction on one client
data through the system begins to dominate the transfsralso roughly equal. In testing, the synchronous de-
mation time as the PlanetLab performance figures in &gn of the client resulted in a per client throughput of
ble 2 show. This is evident in the comparable times sp&hb0 MB/s extraction and 0.43 MB/s ingestion. However,
in the transformation layers in the two environments cothe high level of parallel operation in the lower layer is
trasted with the very divergenttimes spent on requests almmonstrated in the throughput as the number of clients
responses in the two environments. For example, the screases. As Figure 6 illustrates, the read and write
traction request trip took only 28 ms on the local clustéiroughput scales in a nearly linear fashion as the number

10

| Name Space Shards False Rings ~ Time

16 bits 4190 24451 6715 sec
32 bits 4190 0 225 seqg

—*— Extraction
7--*-- Ingestion

Table 3: Recovery time in a name space with 5447 allocated
names for two different name space sizes.

O B N W M~ O
|

System throughput (MB/s)

ure 7 shows the recovery times for two different secret
0 2 4 6 8 10 12 gplitting parameters. Using the ring heuristic provides

Number of clients . . .
) a near-linear recovery time as the number of shards in-
Figure 6; System throughput for a workload of 100 MB per.

client. Error bars were omitted when the standard deviatfoncrea,:sest’ and is muc_:]hfastter .tha?hthe. narl:/e a_ptproachl. ¢ In
multiple runs was less than 0.05 MB/s. contrast, recovery without using the ring heuristic resu

in an exponential growth. This is very apparent in Fig-
6000 - ure 7(b), which must potentially try each path three times.

700 N

600 1o Ring heurstc/ c000 1o Ringheursic 4 The ring heuristic provides an additional layer of security
< 500 1) because a user that can properly authenticate to all of the
5 400 - ' 54000 archives and acquire all of their shards can recover their
8 200 4 A $3000 + daf[a very quickly. In contrast, an intruder th(_’;\t cannot ac-
£ 2004 22000 | quire all of the needed shards must search in exponential
. = A time.

102 1. ‘ | A . The depsity of the name space has a large gffect on the

0 1000 2000 0 1000 2000 time required to recover the shards. As shownin Table 3, a

2 of 3 split b) 3 of 5 split sparse name space results in fewer false shard rings (none
(2) 2 of 3 split (b) 3 of 5 split. in this experiment) and is almost 30 times faster than a

Figure7: Brute force recovery time for shards generated usiggnsely packed name space. An area of future research

different secret splitting parameters. is to design name allocation policies that balance the re-

. .) . overy times with the security of the shards. One simple
of clients increases. With a low number of clients, mucgw y y P

RN o motion would be to utilize a sliding window into the name
of the system'’s time is spent waiting for a request fro . .
zé)ace from which names are drawn. As the current win-

the transformation layer. Write performance is improve . o
) . dow becomes saturated it moves within the name space.

through the use of asynchronous parity updates. While an :
. Is would ensure adequate density for both new names
ingestion response waits for the archive to write the data L

. . : rimd existing names.
before being sent, it does not need to wait for the parity
updates. As the number of clients increases, the system is

able to take advantage of the increased aggregate requésts Ar chive Reconstruction

of the clients to achieve system throughput of 4.66 MBf§,o archive recovery mechanisms were validated on our
for extracuop and.2.86 MB/s for ingestion. One gpal f%cal system using eight 1.5GB archives. Each redun-
future work is to improve system throughput by Impledancy group in the experiment contained 8 virtual disks
menting asynchronous communication in the client. ..~ 4ed using RAID5. A 25MB client workload was
ingested into the system using 2 of 2 XOR and32
Shamir, which resulted in 150 MB of total client data
In the event that the index over a user’s shards is lostrat including the appropriate parity. After the workload
damaged, user data (including the index, if it was storas ingested, an archive was failed. The recovery man-
in POTSHARDS) can be recovered from the shards theager sent reconstruction requests to all of the available
selves. To begin the procedure, the user would authemtiehives and waited for successful responses from a fail-
cate herself to each of individual archives and obtain alver archive. Once the procedure completed, the contents
of her shards. The user would then apply the algorithmfi the failed archive and the reconstructed archive were
described in Section 2.2 to rebuild the fragments. compared. This procedure was run 3 times—recovering

We ran experiments to measure the speed of the recaw14.5 MB/s—with the verification proving successful on
ery process for both algorithm options. While the recoeach trial. The procedure was also run with faults injected
ery process is not fast enough to use as the sole extraciido the recovery process to ensure that the verification
method, it is fast enough for use as a recovery tool. Figrocess was correct.

4.2 User Data Recovery

11

\ System] Secrecy Authorization Integrity Blocks for Compromise Néigon |

FreeNet encryption none hashing 1 access based
OceanStoreg encryption signatures versioning m (out ofn) access based
FarSite encryption certificates merkle trees 1 continuous relooafi
PAST encryption smart-cards immutable files 1
Publius encryption password (delete) retrieval based m (out of n)
SNAD / Plutus encryption encryption hashing 1
GridSharing secret splitting replication 1
PASIS secret splitting repair agents, auditing m (out of n)
CleverSafe| information dispersal unknown hashing m (out of n) none
Glacier user encryption node auth. signatures n/a
Venti none retrieval n/a
LOCKSS none vote based checking n/a site crawling
POTSHARDS secret splitting pluggable algebraic signatures O(R™1) device refresh

Table 4: Capability overview of the storage systems described ini®@eb. “Blocks to compromise” lists the number of data
blocks needed to brute-force recover data given advangptatialysis; for POTSHARDS, we assume that an approxintegr
points toR shard identifiers. “Migration” is the mechanism for autoimaéplication or movement of data between nodes in the
system.

5 Reated Work Storage systems such as Venti [21] and Elephant [25]
are concerned with archival storage but tend to focus on
The design concepts and motivation for POTSHARDS didte near-term time scale. Both systems are based on the
rive from various research projects, ranging from generghilosophy that inexpensive storage makes it feasible to
purpose distributed storage systems to distributed contsiore many versions of data. These systems, and oth-
delivery systems, to archival systems designed for shats that employ “checkpoint” style backups, do not di-
term storage and archival systems designed for very spestly address the security concerns of the data content
cific uses such as public content delivery. However, noner do they address the needs of long-term archival stor-
of these systems, a representative sample of which is s@ge. Venti and commercial systems such as the EMC Cen-
marized in Table 4, has the combination of long-tertara [12] use content-based storage techniques to achieve
data security and proof against obsolescence that P@Rir goals, naming blocks based on a secure hash of their
SHARDS provides. data. This approach increases reliability by providing an

Many systems such as OceanStore [16,23], FARGSY way to verify the content of a block against its name.
SITE [1], PAST [24], SNAD [18], and Plutus [14] rely on LOCKSS [17], Intermemory [9] and other similar sys-
the explicit use of keyed encryption to provide file secredgms are aimed at long-term storage of open content, pre-
While this may work reasonably well for short-term fileserving digital data for libraries and archives where file
secrecy, it is less than ideal for the very long-term storagensistency and accessibility are paramount. These sys-
problem that POTSHARDS is addressing. Further ewems are developed around the core idea of very long-term
dence that POTSHARDS is designed for a different targatcess for public information; thus file secrecy is explic-
can be found in the design tradeoffs made in the systeithgnot part of the design.

mentioned previously. For example, FARSITE uses pureThe pASIS architecture [11, 33], GridSharing [31], and
replication rather than erasure coding in order to proviggeyerSafe [6] avoid the use of keyed encryption by using
for better read performance. In contrast, the design esgcret-splitting(k,m) threshold schemes [4, 20, 22, 28].
phasis on POTSHARDS is reliability for very long-termyynile this approach prevents the introduction of the sin-
storage. gular point of failure that keyed encryption introduces to
Other storage projects that use distributed storage tealsystem, these systems only use one level of secret split-
niques but rely on keyed encryption for file secredyng, in effect combining the secrecy and redundancy as-
do not provide any method for ensuring long-term filpects of the systems. While related, these two elements of
persistence. These systems, such as Glacier [13] ardurity are, in many respects, orthogonal to one another.
Freenet [5], are designed to deal with the specific nea@ismbining the secrecy and redundancy aspects of the sys-
of content delivery as opposed to to the requirementstei also has the possible effect of introducing compro-
long-term storage. An archival storage system must ewises into the system by restricting the choices of secret
plicitly address the problem of ensuring the persistencespitting schemes. An earlier paper on POTSHARDS [30]
the system’s contents. discussed these mechanisms, but lacked implementation

12

details and left many issues unanswered. By splittifigilure of an encryption algorithm, which would neces-
secrecy and redundancy into separate mechanisms, P&itate wholesale re-encryption of a set of large archives
SHARDS is able to implement a security mechanism oas quickly as possible, refactoring for security could be
timized for redundancy or secrecy. done over time to limit the window over which a slow at-
None of PASIS, CleverSafe, or GridSharing are déck could succeed. We are considering integrating refac-
signed to prevent attacks by insiders at one or more siteging into the process of migrating data to new storage
who can determine which pieces they need from othdgvices. We would also like to reduce the storage over-
sites and steal those specific blocks of data. PASIS &gad in POTSHARDS, and are considering several ap-
dressed the issue of refactoring secret shares [32]; h@ueaches to do so. Some information dispersal algorithms
ever, this approach could compromise the system unlezay have lower overheads than Shamir secret splitting;
very carefully done because the refactoring process would plan to explore their use, assuming that they maintain
have to read enough information in aggregate to rebuilte information-theoretic security provided by our cutren
the data. By keeping this on separate nodes, the PA8Igorithm.
designers hoped to avoid information leakage. The research in POTSHARDS is only concerned with
The technique for distributed rebuilding to recover fropreserving the bits that make up files; understanding
a lost archive implemented in POTSHARDS is not newhe bits is an orthogonal problem that must also be
though the approach to keep distributed data secretsidved. Lorie and others have begun to address this prob-
novel. Disaster recovery has long been a concern fem [8], but maintaining the semantic meanings of bits
storage systems [15]; Stonebraker and Schloss first @ver decades-long periods may prove to be an even more
troduced distributed RAID [29] to provide redundancglifficult problem than securely maintaining the bits them-
against site failure via geographic distribution and RAIDselves.
style algorithms. Later systems such as Myriad [3] and
OceansStore [16, 23] expanded this approach to use mpre Conclusions

general redundancy techniques includmgn error cor- .])
recting codes. This paper introduced POTSHARDS, a system designed

to provide secure long-term archival storage. The long
data lifetimes required of modern archival storage systems
6 FutureWork present new challenges and new security threats that POT-
While we have designed and implemented an infrastr@-HARDS addresses.
ture that supports secure long-term archival storage with4n developing POTSHARDS, we made several key con-
out the use of encryption, there are still some outstandimiputions to secure long-term data archival. First, we
issues. POTSHARDS assumes that individual archivese multiple layers of secret splitting, approximate point
are relatively reliable; however, automated maintenanee, and archives located in independent authorization do-
of large-scale archival storage remains challenging [2ains to ensure secrecy, shifting security of long-lived
This issue is particularly critical for systems that must sudata away from a reliance on encryption. The combina-
vive for decades to centuries; changes in basic hardwtom of secret splitting and approximate pointers forces an
will almost certainly occur, yet the individual archiveattacker to steal an exponential number of shares in or-
must evolve with these changes. For example, poweer to reconstruct a single fragment of user data; because
managed disk arrays have recently become attractiveta-does not know which particular shares are needed, he
ternatives to tape [7]. We plan to explore the construstust obtainall of the possibly-required shares. Second,
tion of archives from autonomous power-managed dee demonstrated that a user’s data can be rebuilt in a
vices that can distribute and replicate storage amongshtively short time from the stored shamsly if suffi-
themselves, reducing the level of human intervention ¢iently many pieces can be acquired. Even a sizable (but
replacing disks when sufficiently many have failed. incomplete) fraction of the stored pieces from a subset of
Another area of research we plan to pursue is in irthhe archives will not leak information, ensuring that data
proving the security of POTSHARDS. Currently, POTstored in POTSHARDS will remain secret. Third, we
SHARDS depends on strong authentication and intrusiorade intrusion detection easier by dramatically increas-
detection to keep data safe, but it is not clear how to detatg the amount of information that an attacker would have
intrusions that may occur over many years. We are d@r-steal and requiring a relatively unusual access pattern
ploring approaches that can refactor the data [32] so thatmount the attack. Fourth, we ensure long-term data
partial progress in an intrusion can be erased by makingegrity through the use of RAID algorithms across mul-
new shards “incompatible” with old shards. Unlike thaple archives, allowing POTSHARDS to utilize hetero-

13

geneous storage systems with the ability to recover frorf#] S. J. Choi, H. Y. Youn, and B. K. Lee. An efficient dis-
failed or defunct archives and a facility to migrate data to
newer storage devices.

Our experiments show that the current prototype im-

plementation can store nearly 3 MB/s of user data an

retrieve user data at 5MB/s. Since POTSHARDS is an
archival storage system, throughput is more of a con-
cern than latency, and these throughputs exceed typicgj
long-term data creation rates for most environments. The
storage process is parallelizable, so additional cliemts i
crease throughput until the archives’ maximum throughf7]
put is reached, and additional archives linearly increase
maximum system throughput.

By addressing the long-term threats to archival dat
while providing reasonable performance, POTSHARD

]

provides reliable data protection specifically designed fo
the unique challenges of archival storage. Storing data in
POTSHARDS ensures not only that it will remain avail-[9]
able for decades to come, but also that it will remain se-
cure and can be recovered by authorized users even if all

indexing is lost.

(11]

Acknowledgments

We would like to thank our colleagues in the Storage
Systems Research Center (SSRC) who provided valuable

feedback on the ideas in this paper, helping us to refi

them. We particularly thank Erez Zadok and Andrew Le-
ung for reading early drafts of this paper. We also thank
the sponsors of the SSRC, including Los Alamos Na-
tional Lab, Livermore National Lab, Sandia National Lab,
Hewlett-Packard Laboratories, IBM Research, Intel, Mi{13]
crosoft Research, Network Appliance, Rocksoft, Syman-
tec, and Yahoo.

References

(14]

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-

(2]

(3]

mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environmen[t15]
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDBoston, MA,

Dec. 2002. USENIX.

M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulosgle]
P. Maniatis, T. Giuli, and P. Bungale. A fresh look at the
reliability of long-term digital storage. IRroceedings of
EuroSys 2006pages 221-234, Apr. 2006.

F. Chang, M. Ji, S.-T. A. Leung, J. MacCormick, S. E.
Perl, and L. Zhang. Myriad: Cost-effective disaster tol-
erance. InProceedings of the 2002 Conference on File
and Storage Technologies (FAS$an Francisco, CA, Jan. [17]
2002.

14

(10]

persal and encryption scheme for secure distributed in-
formation storage.Lecture Notes in Computer Science
2660:958-967, Jan. 2003.

] 1. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:

A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Scien@009:46+,
2001.

CleverSafe. Highly secure,
open source storage solution.
http://www.cleversafe.org/, June 2006.
D. Colarelli and D. Grunwald. Massive arrays of idle
disks for storage archives. IRroceedings of the 2002
ACM/IEEE Conference on Supercomputing (SC, 0R)v.
2002.

H. M. Gladney and R. A. Lorie. Trustworthy 100-year dig-
ital objects: Durable encoding for when it's too late to ask.
ACM Transactions on Information Systen23(3):299—
324, July 2005.

A. V. Goldberg and P. N. Yianilos. Towards an archival
intermemory. InAdvances in Digital Libraries ADL'98
pages 1-9, April 1998.

D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM999.

G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Re-
iter. Efficient Byzantine-tolerant erasure-coded storage
In Proceedings of the 2004 International Conference on
Dependable Systems and Networking (DSN 2004dhe
2004.

highly reliable,
Available from

] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H.

Arpaci-Dusseau, and J. Schindler. Deconstructing com-
modity storage clusters. IRroceedings of the 32nd In-
ternational Symposium on Computer Architectysages
60-71, June 2005.

A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive cor
related failures. IrProceedings of the 2nd Symposium on
Networked Systems Design and Implementation (NSDI)
Boston, MA, May 2005. USENIX.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: scalable secure file sharing on untrusted
storage. InProceedings of the Second USENIX Confer-
ence on File and Storage Technologies (FA®apes 29—
42, San Francisco, CA, Mar. 2003. USENIX.

K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes.
Designing for disasters. IProceedings of the Third
USENIX Conference on File and Storage Technologies
(FAST) San Francisco, CA, Apr. 2004.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture
for global-scale persistent storage. Rmoceedings of the
9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS) Cambridge, MA, Nov. 2000. ACM.

P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosen
thal, and M. Baker. The LOCKSS peer-to-peer digital

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

preservation systemCM Transactions on Computer Sys{31]
tems 23(1):2-50, 2005.

E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C.
Reed. Strong security for network-attached storage. In
Proceedings of the 2002 Conference on File and Stor-
age Technologies (FASTpages 1-13, Monterey, CA, Jan.[32]
2002.

L. Peterson, S. Muir, T. Roscoe, and A. Klingaman. Plan-
etLab Architecture: An Overview. Technical Report
PDN-06-031, PlanetLab Consortium, May 2006. [33]
J. S. Plank. A tutorial on Reed-Solomon coding for fault
tolerance in RAID-like systemsSoftware—Practice and
Experience (SPER7(9):995-1012, Sept. 1997. Correc{34]
tion in James S. Plank and Ying Ding, Technical Report
UT-CS-03-504, U Tennessee, 2003.

S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. IfProceedings of the 2002 Conference
on File and Storage Technologies (FASpages 89-101,
Monterey, California, USA, 2002. USENIX.

M. O. Rabin. Efficient dispersal of information for secu
rity, load balancing, and fault tolerancelournal of the
ACM, 36:335—-348, 1989.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: the OceanStore prototype. In
Proceedings of the Second USENIX Conference on File
and Storage Technologies (FASpages 1-14, Mar. 2003.

A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. InProceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP,'papes
188-201, Banff, Canada, Oct. 2001. ACM.

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Vejtch
R. W. Carton, and J. Ofir. Deciding when to forget in the
Elephant file system. Ifroceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP '99)
pages 110-123, Dec. 1999.

T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,

A. Hospodor, and S. Ng. Disk scrubbing in large archival
storage systems. IRroceedings of the 12th Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS
'04), pages 409-418. IEEE, Oct. 2004.

T. Schwarz, S. J. and E. L. Miller. Store, forget, andate
Using algebraic signatures to check remotely administered
storage. InProceedings of the 26th International Con-
ference on Distributed Computing Systems (ICDCS,’06)
Lisboa, Portugal, July 2006. IEEE.

A. Shamir. How to share a secr&ommunications of the
ACM, 22(11):612—613, Nov. 1979.

M. Stonebraker and G. A. Schloss. Distributed RAID—a
new multiple copy algorithm. IRroceedings of the 6th In-
ternational Conference on Data Engineering (ICDE '90)
pages 430-437, Feb. 1990.

M. Storer, K. Greenan, E. L. Miller, and C. Maltzahn.
POTSHARDS: Storing data for the long-term without en-
cryption. InProceedings of the 3rd International IEEE
Security in Storage Workshppec. 2005.

15

A. Subbiah and D. M. Blough. An approach for fault tol-
erant and secure data storage in collaborative work envi-
ronements. IfProceedings of the 2005 ACM Workshop on
Storage Security and Survivabilitgages 84-93, Fairfax,
VA, Nov. 2005.

T. M. Wong, C. Wang, and J. M. Wing. Verifiable secret
redistribution for threshold sharing schemes. Technical
Report CMU-CS-02-114-R, Carnegie Mellon University,
Oct. 2002.

J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,
H. Kiliccote, and P. K. Khosla. Survivable storage sys-
tems.|EEE Computerpages 61-68, Aug. 2000.

L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store:
An archival storage system architecture. Hroceedings

of the 21st International Conference on Data Engineering
(ICDE '05), Tokyo, Japan, Apr. 2005. IEEE.

