
POTSHARDS: Secure Long-Term
Archival Storage Without Encryption

Technical Report UCSC-SSRC-06-03

Mark W. Storer
mstorer@cs.ucsc.edu

Kevin Greenan
kmgreen@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Kaladhar Voruganti
kaladhar@us.ibm.com

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064
http://www.ssrc.ucsc.edu/

September 27, 2006



POTSHARDS: Secure Long-Term Archival Storage Without
Encryption

Mark W. Storer
mstorer@cs.ucsc.edu

Kevin Greenan
kmgreen@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Kaladhar Voruganti
kaladhar@us.ibm.com

Abstract
Modern archival storage systems either store data in the
clear, ignoring security, or rely on keyed encryption to en-
sure privacy. However, the use of encryption is a major
concern when data must be stored an indefinite period of
time—key management becomes increasingly difficult as
file lifetimes increase, and data loss becomes increasingly
likely because keys are a single point of failure and losing
a key is comparable to data deletion. Moreover, traditional
systems are subject to the obsolescence of encryption al-
gorithms themselves, which can expose petabytes of data
the instant a cryptographic algorithm is broken.

To address these concerns, we developed POT-
SHARDS, an archival storage system that addresses the
long-term security needs of data with very long lifetimes
without the use of encryption. POTSHARDS separates
security and redundancy by utilizing two levels of secret
splitting in a way that allows the original data to be recon-
structed from the stored pieces. However, the data struc-
tures used in POTSHARDS are also designed in such a
way that an unauthorized user attempting to collect suf-
ficient shares to reconstruct any data will not go unno-
ticed because it is very difficult to launch a targeted at-
tack on the system, even with unrestricted access to a few
archives. Since POTSHARDS provides secure storage for
arbitrarily long periods of time, its data structures include
built-in support for consistency checking and data migra-
tion. An evaluation of our POTSHARDS implementa-
tion shows that it stores and retrieves data at 2.5–5MB/s,
demonstrates its ability to recover user data given all of
the pieces a user has stored across the archives, and shows
its ability to recover from the loss of an entire archive.

1 Introduction
The capabilities of current archival storage facilities lag
behind the flood of data that must be archived in digi-
tal form. Recent legislation, such as Sarbanes-Oxley and

HIPPA, have placed strict demands on the preservation
and retrieval properties of storage systems. Beyond the
relatively short (for archival purposes) lifetimes enforced
by such legislation, there is information that must last at
least as long as the owner’s lifetime. For example, many
medical records, legal documents, corporate records, and
historical data must be preserved indefinitely with a high
degree of security.

To address the many security requirements for long-
term archival storage, we designed and implemented POT-
SHARDS (Protection Over Time, Securely Harboring
And Reliably Distributing Stuff). The key ideas in POT-
SHARDS are the use ofsecret splittingtechniques to dis-
tribute data across independent authentication domains
and the use of multiple levels of secret splitting and ap-
proximate pointers to hide the relationship between the
resulting pieces. By providing data secrecy without the
use of encryption, POTSHARDS is able to move security
from encryption to the more flexible and secure authen-
tication realm; unlike encryption, authentication need not
be done by computer, and authentication schemes can be
easily changed in response to new vulnerabilities.

Archival storage exhibits a write-once, read-maybe us-
age model, in contrast to more active storage that is read
more frequently than written. This access model, in com-
bination with potentially indefinite data lifetimes, presents
many novel storage problems [2]. Long-term archives
will experience many media and hardware changes due
to failure and technological advances, but data must be
preserved across this evolution. Solutions that suffice for
short-term applications begin to degrade as timeframes
move from months to decades. For example, the man-
agement of cryptographic keys becomes difficult as data
may experience many key rotations and cryptosystem mi-
grations over the course of several decades.

The long-term use of encryption in archives is a major
concern for a number of reasons. First, there is a high

1



chance that, over the course of many years, users will
frequently lose their encryption keys, and key loss is of-
ten equivalent to data deletion. Second, encryption keys
can be stolen, potentially compromising large quantities
of archived data. Both of these issues affect all of the data
that was encrypted using a particular key. Third, encryp-
tion standards may change over the course of many years,
both because of the advances in computational ability to
“brute-force” an algorithm and because algorithms can be
compromised by cryptanalysis. Fourth, long-lived data
may require many key rotations over its lifetime. Ad-
dressing the issue often raises the recurring problem of
migrating large amounts of encrypted data to new encryp-
tion keys or even new encryption algorithms. While re-
encryption may be straightforward for small amounts of
data, migrating petabytes of data in response to a com-
promised encryption algorithm is very difficult and either
requires active user participation or allowing the archive
to know the key used, neither of which is attractive for
long-term secure storage. These and similar issues will
likely be encountered over the long data lifetimes found
in the archival storage realm.

The design of POTSHARDS includes three novel as-
pects that make it well-suited for usage as a secure
archive. First, POTSHARDS uses secret splitting and ap-
proximate pointers as a way to move security from en-
cryption to authentication and to avoid reliance on encryp-
tion algorithms that may be compromised at some point
in the future—unlike encryption, secret splitting provides
information-theoretic security. Second, each user main-
tains a separate, recoverable index over her data, so a
compromised index does not affect the other users and a
lost index is not equivalent to data deletion. More impor-
tantly, in the event that a user loses her index, both the in-
dex and the data itself can be securely reconstructed from
the user’s shares stored across multiple archives. How-
ever, this reconstruction requires an exponential number
of shares because only the data owner knows the exact
relationship between the shares. An attacker must use ap-
proximate pointers to identify sets of shares to retrieve
and illicitly assemble all of them without any archive
noticing the intrusion. Third, POTSHARDS uses a write-
once RAID technique across multiple archives to provide
redundancy, data migration, recoverability and integrity
checking in a distributed environment.

We implemented POTSHARDS in 15,000 lines of Java,
and conducted several experiments to test its performance
and resistance to failure. POTSHARDS can read and
write data at 2.5–5 MB/s on commodity hardware, and
survives the failure of an entire archive with no data loss
and little effect seen by users. In addition, we demon-

A r c h i v eA r c h i v e A r c h i v e

E n d u s e r
P r e � p r o c e s s i n gB l o c kO b j e c tS e c r e c yF r a g m e n t F r a g m e n t F r a g m e n t• • •R e d u n d a n c yP l a c e m e n tS h a r d S h a r d S h a r d• • • S h a r dS h a r dS h a r d A U T H E N T I C A T I O N

A U T H E N T I C A T I O N
C l i e n t T r a n s f o r m a t i o n

P l a c e m e n t
A r c h i v e

Figure 1: Overview of the POTSHARDS archival storage sys-
tem. The arrows in this diagram point down, corresponding to
data being ingested. For data extraction, the arrows (and data
flow) point up towards the user.

strated the ability to reconstruct a user’s data from all of
the user’s stored shares. These experiments demonstrate
the system’s suitability to the unique usage model of long-
term archival storage.

2 Architecture Overview
POTSHARDS was designed to provide long-term secure
archival storage that avoids the use of encryption. Thus,
it is important to describe the long-term threats that POT-
SHARDS attempts to guard against. POTSHARDS uses
three techniques to counter these threats: secret splitting,
a technique that, unlike encryption, provides information-
theoreticallyprovablesecurity; approximate pointers that
hide direct relationship between pieces of stored data; and
separation of archives into distinct authorization domains.

The POTSHARDS model assumes a relatively sta-
ble environment in which the barrier to entry for a new
archive would be relatively high because it would need to
demonstrate that it could provide a certain level of ser-
vice. POTSHARDS is not designed as a loosely feder-
ated peer-to-peer service; rather, each archive should have

2



an incentive to take an active role in preserving its own
stability and security while actively questioning the sta-
bility and security of the other archives. However, since
POTSHARDS must survive for decades, it is a given that
the overall system will undergo constant change as tech-
nology improves. The design of POTSHARDS, shown
in Figure 1 makes it easier to accommodate these incre-
mental changes in two key ways. First, the system is de-
signed as a series of modules. A modular design allows
each component to be optimized for a specific task. Sec-
ond, communication between components is performed
through well-defined interfaces using a small number of
request and response message types.

The remainder of this section will discuss the threat
model that long-term secure archives such as POT-
SHARDS must face (Section 2.1), and the data organiza-
tion that POTSHARDS uses to combat these threats (Sec-
tion 2.2). The software structure and organization of the
system itself is discussed in Section 3.

2.1 Threat Model

In order to properly design a system for secure archival
storage, it is necessary to identify the unique threats to
such long-term storage systems. Some of these threats are
variations on common concerns that take on new mean-
ing in the area of archival storage, while others are new
threats that typically do not affect traditional storage sys-
tems. Adequate understanding of these threats is essen-
tial to effectively devise new policies and mechanisms to
guard against them. We will focus on threats to the se-
curity of the long-term archive; more conventional threats
are described elsewhere [2].

Secrecy in long-term storage presents a complex chal-
lenge. In an archival storage system, data can be very
difficult to reproduce. The software, hardware and even
users that produced the data may no longer be avail-
able. Thus, secrecy techniques must adequately balance
the need for secrecy and the unrecoverable nature of the
data. Additionally, although the usage model of storage
is write-once, read-maybe, users must still be able to find
the data they stored should they desire to read it. If a user
is unable to locate and retrieve his data from an archival
system, the availability aspect of security has been vio-
lated.

Authentication and data availability in long-term se-
cure storage also presents problems not typically encoun-
tered in shorter-term storage systems. If the storage sys-
tem plans on providing file secrecy as part of security,
users must be able to authenticate themselves to the sys-
tem as a first step in authorization. A challenge in long-
term secure storage is that the user primarily attached to

the data may no longer be available, and the credentials
may be lost as well (i. e., perhaps the user has died).
Archival storage systems must be able to produce data if a
party provides sufficient authorization; “we lost the key”
is not an excuse for denial of service.

Intrusion detection is more challenging in archival
systems because the long data lifetimes that such sys-
tems must support provide attackers with much longer
windows during which they can attempt to compromise
a system’s security. Traditional intrusion detection in-
cludes techniques that compare audit data and network
activity to a database of known attacks. However, an at-
tack that is methodical enough to make only the slightest
of changes at any one time and space each step far enough
apart would be difficult to detect by traditional signature
matching algorithms. For example, an attack that required
an intruder to break into a system to steal twenty pieces of
data would likely be caught if the attack occurred during
a two day period, but would be almost certainly be missed
if the attack took place over two decades.

Maintaining integrity is likewise more difficult be-
cause of the relatively short lifetime and limited reliability
of traditional storage components, causing problems with
data degradation over the data’s lifetime, which greatly
exceeds individual component lifetime. Integrity guaran-
tees involve two distinct issues. The first is the internal
integrity problem of data within an archive becoming cor-
rupted by media failures and silent read errors. The sec-
ond, found in distributed storage systems, is the external
integrity challenge. Each archive must have a method of
ensuring that the other archives in the distributed system
are behaving properly. This problem has been addressed
for public data [9, 17], but not for secure storage. Due
to the long lifetimes of archival data, long-term storage
systems will witness events that require data to be moved
between archives. The reasons for this change could in-
clude the inevitable failure or obsolescence of hardware,
system updates and possibly even data movement as a se-
curity factor. A long-term system must thus be immune to
the failure or reliance of any given component.

2.2 Data Entities

Data inserted into POTSHARDS goes through multiple
layers of a software stack to distribute information in such
a way that an attacker cannot easily reconstruct the data,
as shown in Figure 1. Data at the top level consists offiles,
which are the entities that clients submit to the system
for preservation. Files are broken into fixed-size blocks,
which are converted intob-byteobjectsby appending the
secure hash of the underlying block and the ID of the ob-
ject. Objects are then split intofragmentsusing an algo-

3



A r c h i v e 0 A r c h i v e 1 A r c h i v e 2 A r c h i v e 3

O b j e c tF r a g m e n t 0 F r a g m e n t 1 F r a g m e n t 2S h a r d 0 0 S h a r d 0 1 S h a r d 0 2 S h a r d 0 3S h a r d X R e d u n d a n c y g r o u pS h a r d Y P a r i t yS h a r d X ⊕ S h a r d Y ⊕ S h a r d 0 3
Figure 2: The relationship between objects, fragments, and
shards in POTSHARDS. Archive-level redundancy, describedin
Section 3.3.3, is done across unrelated shards.

rithm optimized for secrecy with little regard for redun-
dancy. Currently, POTSHARDS uses an XOR-based se-
cret splitting algorithm for this stage, which producesn
fragments, each of which isbbytes long. In addition to the
data needed to reconstruct the object, each fragment con-
tains information used to reconstruct the fragment from
the shardsinto which the fragment is broken. The rela-
tionship between objects, fragments, and shards is shown
in Figure 2.

Shards are the basic entity stored in the archives, and,
in this version of POTSHARDS, are generated from frag-
ments using anm/n secret splitting algorithm [22, 28]. In
secret splitting, a secret is distributed by splitting it into a
set numbern of shares such that no group ofk < mshares
reveals any information about the secret; this approach
is called an(m,n) threshold scheme. In such a scheme,
any m of the n shares can be combined to reconstruct
the secret, but there are information-theoretic proofs that
combining fewer thanm shares revealsno information.
Thus, splitting fragments using anm/n scheme results in
n shards that each containb bytes of data. Shards con-
tain no information about the fragments that make them
up; as a result, an attacker who compromises an archive
cannot gain information about the data being stored on
the archive other than its source, which can, if desired, be
further hidden using onion routing [10] or similar tech-
niques. Note that, because of the two-level secret split-
ting, the overall storage requirements for the system are
relatively high; a 2-way XOR split followed by a 2/3 se-
cret split would increase storage requirements by a fac-
tor of six. However, users can easily submit compressed
archival data [34] to be stored, reducing the amount of

S h a r d 0 0 S h a r d 0 1S h a r d 2 1 S h a r d 0 2 S h a r d 0 3S h a r d 2 2 S h a r d 2 3
Figure 3: Approximate pointers and shard relationships. In
this diagram, each approximate pointer points toR = 4 possi-
ble shards. Fragment 0 can be reconstructed by following the
links for shard0X . If an intruder mistakenly picks shard21, he
will not discover his error until he has retrieved the entirechain
and attempted to verify the reassembled fragment.

storage needed; compressed data is handled just like any
other type of data.

The only information a shard contains to link it to other
shards of the same fragment is anapproximate pointer.
Each shard has an approximate pointer to the next shard
in the fragment, and the last shard points back to the first,
completing the cycle, as shown in Figure 3. In contrast
to traditional pointers that contain the exact identifier of
the object pointed to, an approximate pointer points to a
rangeof potential identifiers. This can be implemented in
two ways: randomly picking a value withinR/2 above or
below the next shard’s identifier, or masking off the low-
orderr bits (R= 2r ) of the next shard’s identifier, hiding
the true value. Currently, POTSHARDS uses the latter ap-
proach; we are investigating the tradeoffs between the two
approaches. When shards are created, theexactnames
of the shards are returned to the user. Typically, a user
maintains the relationship between shards, fragments, ob-
jects, and files in an index to allow for fast retrieval, as
described in Section 3.2; however, these exact pointers
arenot stored in the shards themselves, so they are not
available to someone attacking the archives.

The use of approximate pointers provides a great deal
of security by preventing an intruder who compromises
an archive from knowing exactly which shards to steal
from other archives. An intruder would have to stealall
of the shards the approximate pointer could refer to, and
would have to steal all of the shards they refer to, and so
on. All of this would have to bypass the authentication
mechanisms of each archive, and archives would be able
to identify the access pattern of a thief, who would have
to steal consecutively-numbered shards from an archive.
Since partially reconstructed fragments cannot be verified,
the intruder might have to stealall of the potential shards
to ensure that he was able to reconstruct the fragment. For
example, if an approximate pointer points toRshards and
a fragment is split usingm/n secret splitting, an intruder

4



would have to steal, on average,Rm−1/2 shards to decode
the fragment.

A legitimate user who has access to all of his shards,
on the other hand can easily rebuild the fragments and,
from them, the objects and files they comprise. Recov-
ery of the user’s data is based on approximate pointers
located within the shards, as shown in Figure 4. Once a
user gains all of the necessary shards, there are two brute-
force approaches to regenerating the fragments encoded
into shards usingm/n coding. First, a user could try every
possible chain of lengthm, rebuilding the fragment and
attempting to verify it. Second, a user could narrow the
list of possible chains by only attempting to verify chains
of lengthn that represented cycles, a process we call the
ring heuristic. The Shamir secret splitting algorithm is
computationally expensive, so combining a set of shards
that do not produce a valid fragment is expensive. The
ring heuristic reduces the number of failed reconstruction
attempts in two ways. First, the number of cycles of length
n is lower than the number of paths of lengthmsince many
paths of lengthn do not make cycles. Second, reconstruc-
tion using the Shamir secret splitting algorithm requires
that the shares be properly ordered and positioned within
the share list. Though the shard ID provides a natural or-
dering for shards, it does not assist with positioning. For
example, suppose the shards were produced with a 3 of
5 split. A chain of three shards,〈s1,s2,s3〉, would poten-
tially need to be submitted to the secret splitting algorithm
three times to test each possible index:〈s1,s2,s3,φ ,φ〉,
〈φ ,s1,s2,s3,φ〉, and 〈φ ,φ ,s1,s2,s3〉. As Figure 4 illus-
trates, fragments include a hash which is used to con-
firm successful reconstruction. Fragments also include the
identifier for the object from which they are derived, mak-
ing the combination of fragments into objects a straight-
forward process. An evaluation of the two approaches to
select chains to verify is discussed further in Section 4.2.

All data entities are given 128-bit identifiers; objects,
fragments and shards all have unique names within the
system. The first 40 bits of the name uniquely identify the
client in the same manner as a bank account is identified
by an account number. The remaining 88 bits are used to
identify the data entity. Object IDs and fragment IDs do
not play a role in the security of the data, so their names
can be generated simply. In contrast, the time to recover
objects from a set of shards is directly related to the den-
sity of the shards’ names—higher densities make recovery
slower and allow shards to “hide” amongst more shards.
Thus, shards’ IDs must be chosen with greater care to en-
sure a high density of names to provide sufficient security.

In addition to uniquely identifying data entities within
the system, IDs play an important role in the secret-

splitting algorithms used in POTSHARDS. For secret-
splitting techniques that rely on linear interpolation [28],
the order of the secret shares is an input to the reconstruc-
tion algorithm. Thus, knowing the order of the shards in
a ring can greatly reduce the time taken to reconstruct the
secret. This is currently done by ensuring that the shards
that make up a fragment have identifiers that follow the
shards’ input order to the reconstruction algorithm.

3 System Design

This section describes the software structure of POT-
SHARDS and the archives it uses. Both the POT-
SHARDS and archive sections discuss the components
that make up the system and their relationships to one
another, and the flow of information through the compo-
nents. The archive description is separate from the POT-
SHARDS design because the internal archive design is
largely orthogonal from the rest of POTSHARDS.

3.1 POTSHARDS Components and Data Flow

As Figure 1 shows, POTSHARDS consists of three pri-
mary layers: transformation, placement and archive. Lay-
ers communicate with one another through a request and
response message protocol. Request messages travel
down the stack from the client application to the archives
and response messages travel back up the stack. Re-
quests start at the top of the stack with the client applica-
tion. Below this is the transformation layer, which takes
those blocks of data and, utilizing secret splitting, pro-
vides data secrecy and user-level redundancy. The next
layer is responsible for placement, accepting the data en-
tities to store in the system and distributing them to the
archive layer.

Each archive in POTSHARDS can exist within its
own security domain with its own authentication scheme.
Though POTSHARDS is distributed, it is different from
many peer-to-peer systems in that archives do not join and
leave the system frequently. Furthermore, each archive is
expected to ensure its own stability and integrity while
actively auditing the stability and integrity of its partner
archives. Archive internals are further described in Sec-
tion 3.3.

The modular design and communications model allow
a large degree of flexibility in where the layers reside and
even allow multiple users to share a single instance of
a layer. One model that provides a high degree of se-
curity is to place the client application, transformation
layer and placement layer on the user’s local computer. In
this manner, the user’s unsecured data is never transmit-
ted over an open communications channel. Alternatively,

5



Module Input Output
Pre-processing block object

Secrecy split object set of fragments
Redundancy split fragment set of shards

Table 1: Transformation layer modules and their inputs and out-
puts.

network communications can travel over SSL-encrypted
links, providing strong security for data in transit.

The user communicates with POTSHARDS through a
client application, which has three primary tasks. In the
first task,file ingestion, the client breaks the file into fixed-
sized blocks, adding padding on the end of the last block if
necessary. The client then submits these blocks to the sys-
tem as a storage request. If successful a storage response
contains the information needed to map shards to blocks.
The second task of the client is to request blocks from the
system. Extraction is based on the block to shard mapping
contained within an index maintained by the client. Re-
quests for shards travel down the stack along with infor-
mation needed to reconstruct the block. As the response
travels back up the stack, the block is reconstructed. The
third task of the client is to manage the user’s index to pro-
vide the shard identifiers used to retrieve blocks from the
system. This task, described in detail in Section 3.2, in-
cludes constructing index pages, submitting pages to the
system for storage and requesting index pages from the
system. The first two tasks are required tasks for POT-
SHARDS; however, the third task is optional—the user
can choose to maintain the index locally and not store it
in the archive.

The transformation layer is responsible for encoding
data during ingestion and reconstruction during extrac-
tion. In keeping with the specialized components design
of POTSHARDS, data transformation is accomplished us-
ing three distinct phases: pre-encoding, secrecy encoding,
and user-level redundancy encoding. The inputs and out-
puts to each layer can be seen in Table 1.

The first phase, pre-encoding, produces objects from
files via blocks. As Figure 4 illustrates, an object in POT-
SHARDS contains a hash over the object ID and object
payload. During extraction, this hash can be used to con-
firm the successful reconstruction of an object.

The second phase is tuned for secrecy and involves an
n/n secret split using an XOR-based algorithm. It can be
shown that splitting using XOR, in addition to being a rel-
atively fast secret splitting technique, results in provably
secure data secrecy. This transformation phase takes ob-
jects as input and produces a set of fragments. As Figure 4
shows, fragments also contain a hash over their contents
that can be used to confirm a successful reconstruction.

Figure 4: Data entities in POTSHARDS. Size, in bits, is indi-
cated above each field. Note that entities are not shown to scale
relative to one another. # is the number of shards that the frag-
ment produces

The fragment also contains metadata that can be used to
identify the shards that it produces as well as the object
that it was derived from.

The third phase produces a set of shards and is based
on Shamir’sm/n linear interpolation secret splitting al-
gorithm [28]. This layer is tuned for user-level redun-
dancy, and provides security over the fragment’s meta-
data. User-level redundancy is used to provide availability
in the event that an archive is unavailable during extrac-
tion. The only metadata that shards contain are an identi-
fier and an approximate pointer to another shard. Thus, a
lone shard does not reveal any information about the ob-
ject that it is used to rebuild, the exact ID of the next shard
or even the location of the next shard.

The placement layer receives sets of shards from the
transformation layer and is responsible for two tasks. The
first is reducing the risk of information leakage. It does
this by comparing the parameters used to generate shards,
the placement policy and the number of archives. The
second task, if the constraints are met, is to assign shards
to archives. The assignment ensures that no two shards
from a single fragment are placed on any given archive.

3.2 Archive Index

While the archival model of storage is write-once, read-
maybe, users must still be able to find the data they stored
should they desire to read it. Thus, users who store data in
POTSHARDS should keep an index that stores the map-
ping between files and shards, allowing the user to locate
the shards that are needed to rebuild (via fragments, ob-
jects, and blocks) a given file. The user’s index is similar
to an encryption key in that it contains the information
needed to reconstruct the user’s data. However, unlike
data secured by encryption, a users’s data can be recov-
eredwithoutan index.

6



Of course, this index is at risk of loss; while data can be
retrieved without it, its presence greatly simplifies data re-
trieval. Thus, users that store their data in POTSHARDS
may also store their indexes in the system. If this is done,
the user need only rebuild the index using the algorithm
described in Section 2.2; the rebuilt index can then be used
to find the shards needed to rebuild any object. This ap-
proach has two advantages. First, since each user main-
tains his own index, if the index for one user is compro-
mised, it does not affect the security of other users’ data.
Second, the index for one user can be recovered with no
effect on other users.

Because the index is recoverable from the data itself, it
is different from using encryption in two important ways.
First, the user’s index is not a single point of failure like an
encryption key. If the index is lost or damaged, it can be
recovered from the data without any input from the owner
of the index. Second, full archive collusion can rebuild
the index. If a user can prove a legal right to data, such as
by a court subpoena, than the archives can provide all of
the user’s shards and allow the reconstruction of the data.
If the data was encrypted, the files without the encryption
key are effectively inaccessible. However, POTSHARDS
can rebuild the data without the index or any other user
input if all of the shards are available.

The index for each user is stored as a linked list of index
pages with new pages inserted at the head of the list. Since
the pages are designed to be stored within POTSHARDS,
each page is immutable. When a user submits a file to
the system, a list of mappings from the file to its shards
is returned. This data is recorded in a new index page.
Included in the new page is a list of shards correspond-
ing to the previous head of the list. This new page is
then submitted to the system and the shard list returned
is maintained as the head of the index list. These index
root-shards can be maintained by the client application or
even on a physical token, such as a flash drive or smart
card. In the event that a user loses her index, she can au-
thenticate to the archives (perhaps complying with more
stringent authentication policies) and retrieve the shards
that belong to her. Once the client’s shards have been col-
lected, the approximate pointers can be used as hints in the
combinatoric problem of combining shards, as described
in Section 2.2.

3.3 Archive Design

The architecture of POTSHARDS demands an archive
model that preserves the secrecy provided by the other
components of the system while maintaining the goal of
reliable, long-term storage. The system makes both reli-
ability and security guarantees by arranging each archive

into a separate security-failure domain and intelligently
placing the shards across each domain. In addition, the
archives themselves hold no information about fragment
and object reconstruction, so a full compromise of a single
archive gives an adversary very little, if any, information
that can be used to recover user data. Absent such precau-
tions, the archive model would likely weaken the strong
security properties provided by the other system compo-
nents.

3.3.1 Components

Archives in POTSHARDS are oblivious to the existence
of files, objects and fragments; their only job is to reli-
ably store shards for an extended period of time without
revealing any information about client data. Reliability
is achieved by requiring all archives to agree on RAID-
based methods to ensure whole archive reconstruction in
the presence of failure. In the absence of RAID techniques
across the archives, the procedure of archive reconstruc-
tion would involve requesting and scanning user indices,
which would compromise security and violate the POT-
SHARDS security property of having only a client know
the explicit relationships between its shards.

Redundancy synchronization is controlled by a set of
replicatedrecovery managers. This coordination allows
the archives to form coherent, fault-tolerantredundancy
groupswithout disclosing any information about the ori-
gin of the individual shards. Each recovery manager holds
the system-wide redundancy group indices. Due to the
importance of redundancy information, the recovery man-
ager is replicated, giving each archive its own recovery
manager. Updates such as archive and storage additions
are assumed to occur occasionally, so maintaining consis-
tency across the replicated managers requires a manager
to broadcast any changes in its index to all other managers
on the system’s archives.

An archive joins the POTSHARDS system by first for-
matting all of its available storage into equal-sizedshard
groups. Each shard group contains a hash of its contents,
an ID header and an array of equal-sized, write-onceshard
slots. The hash is used to perform intra-archive integrity
checks; the ID header contains a map of the shards stored
in the shard group; and each fixed-size shard slot con-
tains shard data. Next, the archive will advertise all newly
created shard groups to a recovery manager, which will
assign the shard groups to equal-sizedvirtual disks. The
virtual disks are used to create redundancy groups and al-
low for maximum space utilization across heterogeneous
archives.

A redundancy group is a set ofn virtual disks, parti-
tioned intop parity disks andn− p data disks. Each re-
dundancy group is constructed with a particular RAID al-

7



Figure 5: Shard groups arranged into virtual disks and redun-
dancy groups. The first virtual disk of groupR0 shows that shard
groups are made of fixed sized shard slots.

gorithm, which has the ability to tolerate anyp virtual disk
failures. To ensure a prescribed level of archive fault toler-
ance, a set of constraints based on first-fit bin-packing,n,
p and the RAID algorithm are used to assign virtual disks
into redundancy groups. For example, providing single
archive fault tolerance requires that no more than one vir-
tual disk from a single archive be placed into a RAID 5
redundancy group, while no more than two virtual disks
from a single archive may be placed in to a RAID 6 group.
By constructing the redundancy groups in this fashion, the
number of decisions made by the placement layer is sig-
nificantly decreased, since placing a set of shards from
a single fragment among distinct archives is sufficient to
maintain security and reliability.

As virtual disks and redundancy groups are created,
parity information is propagated to the affected archives.
Each archive will receive a set of shard group IDs with
their newly assigned type (data or parity). The relation-
ship between the virtual and physical entities is shown in
Figure 5.

3.3.2 Information Flow

During a single client ingestion, an archive placement de-
cision is made at the placement layer, where each shard
is stored at a distinct archive. The placement layer has
already divided the shards up into their respective secu-
rity and reliability domains; now the archive must place
the shards into redundancy groups by randomly choos-

ing a shard group for placement. The shard placement
process consists of three distinct steps. First, a random
shard group is chosen as the storage location of the shard.
Next, the shard is placed in the last available slot in the
the shard group. Finally, the corresponding parity groups
for the chosen shard group are retrieved from the recov-
ery manager and the parity updates are sent to the proper
archives. Each parity update contains the data stored in
the slot and the appropriate parity slot location. The fail-
ure of any parity update will result in a roll-back of the
parity updates and placement of the shard into another re-
dundancy group. Although it is assumed that all of the
archives are trusted, we are currently analyzing the secu-
rity effects of passing shard data between the archives dur-
ing parity updates and exploring techniques for preventing
archives from accumulating shards to perform brute-force
data reconstruction.

3.3.3 Reliability

Long-term reliability of user data is provided by the re-
dundancy groups defined across multiple archives. In the
event of a whole or partial archive failure, the archives
collaborate to reconstruct and re-distribute the contentsof
the failed archive. The second, redundant split in the en-
coding process gives a user short-term reliability, which
may be needed during temporary outages or archive re-
construction. In fact, in the general case onlymof n shares
are used when recovering fragments, so it is unlikely that
a client will notice any differences during temporary out-
ages.

Archive reconstruction begins with a request to a single
recovery manager. The recovery manager constructs a set
of messages that contain the instructions for shard group
reconstruction and where to store the result. Each mes-
sage contains the information required to reconstruct a set
of shard groups from the failed archive. A single message
traverses each archive in the failed archive’s redundancy
group until the contents of the shard groups are recon-
structed. The reconstructed shard groups are then stored at
the location chosen by the recovery manager. Each mes-
sage contains an entry for each participating archive and a
buffer that will eventually contain the reconstructed data.
An entry consists of an archive address, an operation and
a set of shard group identifiers. Each archive extracts its
entry and performs one of three operations:read, XOR
or write. If the operation is a read or an XOR, the shard
group identifiers in the entry are used to either read the
shard groups into the data buffer or perform the XOR sum
of the shard groups and data buffer. If the operation is a
write, then the current archive stores the contents of the
data buffer locally, since it is the fail-over archive.

8



There are two distinct types of fail-over used to perform
archive recovery. First, an entire archive can be replaced
by another, newly added archive. In this scenario, the re-
covery manager writes all of the reconstructed data to the
new archive and the appropriate information is updated
in the redundancy group indices. If a failure occurs and
a new archive has not been added to carry the load, then
the recovery manager must decide how to distribute the
reconstructed data. The target archive used to store re-
constructed data is chosen at virtual disk granularity. The
reconstructed data must be distributed among the archives
in a way that does not break the fault tolerance provided
by the redundancy groups. In addition, migrating the data
from the failed archive to another archive in the system
may result in a change of security domain. When per-
forming this type of reconstruction, the manager instructs
the reconstructed virtual disks to migrate as soon as the
failed archive re-joins the system or a new archive joins
the system, thus re-placing the recovered data in a safe
security domain.

3.3.4 Integrity

Preserving data integrity is a critical threat to all long-
term archives. As the age of a system increases, so does
the chance of data degradation, so POTSHARDS provides
two different forms of integrity checking. The first tech-
nique requires each of the archives to periodically check
its data for integrity violations using a hash stored in the
header of each shard group. The second technique is a
form of inter-archive integrity checking that utilizes alge-
braic signatures [27] across the redundancy groups in the
system to perform distributed integrity checks.

Each shard group includes a hash in its header for in-
tegrity checking purposes. It is the responsibility of each
individual archive to periodically check the integrity of
its data by comparing the hash to the contents of the shard
group. Given the immense amount of data that is stored on
a single archive, integrity checking can quickly become
a daunting task [26]. An archive can either perform in-
tegrity scans periodically at some predefined interval or
opportunistically before or after a shard group write. The
latter case requires a background process to scan the shard
groups, while the former case adds the computation of a
hash and hash comparison to every shard group update.

Redundancy groups can be used for purposes other
than rebuilding failed archives. Using algebraic signatures
over the virtual disks of a redundancy group, the integrity
of the data can be checked from any archive or a third
party without giving away too much information about
the data. Algebraic signatures, which have the property
that the signatures of the parity equals the parity of the
signatures, can also be used to verify that an archive is

storing data properly [27]. This scheme can be used both
for “standard” RAID and for error correcting codes that
can tolerate multiple erasures, such as XOR-based Reed-
Solomon. Algebraic signature requests can periodically
be made by a recovery manager, where a set of archives
are queried for the algebraic signature of a specific inter-
val of data. Each archive computes its required signature
and sends a response to the requesting recovery manager,
which verifies the correctness of the response. This dis-
tributed check ensures that the archives are not simply
throwing away data and are performing internal integrity
checks. If an integrity violation occurs, then the recov-
ery manager must determine where the violation(s) origi-
nated. Determining the appropriate position of the viola-
tion(s) is simple if the number of positions is less than or
equal to the error correcting capability of the redundancy
algorithm. A combinatoric search using more algebraic
signature queries is required if the number of violations is
beyond the error correcting capability of the redundancy
algorithm.

4 Experiments

The experiments on the POTSHARDS prototype were de-
signed to show several things: the performance of the sys-
tem broken down layer-by-layer, overall system through-
put as more clients write to the system, the performance
of POTSHARDS in a actual global environment, an anal-
ysis of shard reconstruction, and the verification of whole
archive recovery. Our experiments were conducted on
POTSHARDS running on both a local and distributed en-
vironment using a variety of workloads appropriate for
long-term archival storage. The workloads contained a
mixture of plaintext, PDF, PS and images. The read/write
performance numbers reflect the performance of POT-
SHARDS during normal operation, while reconstructing
data from shards and recovery from a failed archive rep-
resent special cases in system state.

In our experiments, the user’s computer contains the
client application along with the transformation and
placement layers shown in Figure 1. In the local exper-
iments, these layers were run on systems with two Pen-
tium 4 processors running at 2.74 Ghz with 2 GB of RAM.
The operating system on each was Linux version 2.6.9-
22.01.1. For local tests, there were sixteen archives, each
hosted on systems with two Pentium 4 processors run-
ning at 2.74 GHz. Each system had 3 GB of RAM and
7.3 GB of available local hard drive space. The archives
were all running Linux version 2.6.9-34. In all of the local
tests, the hosts were located on the same local area net-
work. To simplify the experiments, the recovery manager
ran from a single host and propagated parity information

9



to the individual archives as new updates arrived. The
PlanetLab [19] experiments were run in a slice that con-
tained 12 PlanetLab nodes distributed across the globe. Of
the 12 nodes, 8 were used as archives and the remaining
4 were used to run the client application, transformation
layer and placement layer.

The POTSHARDS prototype system itself consists of
roughly 15,000 lines of Java 5.0 code. Communica-
tions between layers utilized Java sockets over standard
TCP/IP. The archives used Sleepycat Software’s Berkeley
DB version 3.0 for persistent storage of shards.

4.1 Read and Write Performance
The architecture of POTSHARDS is based on a four pri-
mary components: a client, transformation layer, place-
ment layer and archive layer. Each layer, seen in Figure 1
communicates with its adjacent layer through a series of
messages. In the current implementation, the client sub-
mits blocks synchronously, awaiting a response from the
system before submitting the next block. In contrast, the
remainder of the system is highly asynchronous. Table 2
profiles the ingestion and extraction of one block of data.
It compares the time taken on an unloaded local cluster
of machines and the heavily loaded, global scale Planet-
Lab. In addition to the time, the table details the number
of messages exchanged during the request.

As the numbers clearly show, the majority of the time
on the local cluster is spent in the transformation layer.
This is to be expected because polynomial generation and
linear interpolation in the Shamir secret-splitting algo-
rithm is compute-intensive. Additionally, the local clus-
ter is interconnected by a dedicated high-throughput, low-
latency network with almost no outside cross-traffic. The
transformation time for ingestion is greater than for ex-
traction for two reasons. First, during ingestion, the trans-
formation must generate many random values. In future
implementations, this could be optimized through the use
of pre-generated values. Second, during extraction, the
transformation layer performs linear interpolation using
only those shards that are necessary. That is, given anm/n
secret split, onlym of the shares are used even if alln are
available. During extraction, the speed improvements in
the transformation layer are balanced by the time required
to collect the requested shards from the archive layer.

In a congested, heavily loaded system, the time to move
data through the system begins to dominate the transfor-
mation time as the PlanetLab performance figures in Ta-
ble 2 show. This is evident in the comparable times spent
in the transformation layers in the two environments con-
trasted with the very divergent times spent on requests and
responses in the two environments. For example, the ex-
traction request trip took only 28 ms on the local cluster

Ingestion Profile Cluster PlanetLab

Transformation time (ms) 1509 2276
Layer msgs in 1 1

Request msgs out 1 1
Placement time (ms) 37 30606

Layer msgs in 1 1
Request msgs out 6 6
Archive time (ms) 67 39109
Layer msgs in 6 6

Request msgs out 6 6
Response Trip time (ms) 88 54271

Total Round Trip time (ms) 1731 95952

Extraction Profile Cluster PlanetLab

Shard time (ms) 832 29666
Acquisition msgs 34 34

Transformation time (ms) 1009 1698
Layer msgs in 1 1

Response msgs out 1 1
Request Trip time (ms) 28 6493

Total Round Trip time (ms) 1843 31410

Table 2: Profile of the ingestion and extraction of one block of
data comparing trials run on a lightly-loaded local clusterwith
the global-scale PlanetLab. Results are the average of 3 runs
of 36 blocks per run. Parameters: 2 XOR secrecy split, 2 of 3
Shamir redundancy split.

but required about 6.5 seconds on the PlanetLab trials.
Since request messages are quite small, the difference is
even more dramatic in the shard acquisition times for ex-
traction. Here, moving the shards from the archives to the
transformation layer took only 832 ms on the local cluster
but over 29.5 seconds on PlanetLab.

The measurements per block represent two distinct sce-
narios. The cluster numbers are from a lightly-loaded,
well-equipped and homogeneous network with unsatu-
rated communication channels. In contrast, the Planet-
Lab numbers feature far more congestion and resource de-
mands as POTSHARDS contended with other processes
for both host and network facilities. However, in archival
storage, latency is not as important as throughput. Thus,
while these times are not adequate for low-latency appli-
cations, they are acceptable for archival storage.

Because the per-block time is roughly equivalent, the
throughput for ingestion and extraction on one client
is also roughly equal. In testing, the synchronous de-
sign of the client resulted in a per client throughput of
0.50 MB/s extraction and 0.43 MB/s ingestion. However,
the high level of parallel operation in the lower layer is
demonstrated in the throughput as the number of clients
increases. As Figure 6 illustrates, the read and write
throughput scales in a nearly linear fashion as the number

10



Number of clients
0 2 4 6 8 10 12

S
ys

te
m

 th
ro

ug
hp

ut
 (

M
B

/s
)

0

1

2

3

4

5
Extraction
Ingestion

Figure 6: System throughput for a workload of 100 MB per
client. Error bars were omitted when the standard deviationof
multiple runs was less than 0.05 MB/s.

0 1000 2000

T
im

e 
(s

ec
on

ds
)

0

100

200

300

400

500

600

700
Ring heuristic
No heuristic

(a) 2 of 3 split.

0 1000 2000

T
im

e 
(s

ec
on

ds
)

0

1000

2000

3000

4000

5000

6000
Ring heuristic
No heuristic

(b) 3 of 5 split.

Figure 7: Brute force recovery time for shards generated using
different secret splitting parameters.

of clients increases. With a low number of clients, much
of the system’s time is spent waiting for a request from
the transformation layer. Write performance is improved
through the use of asynchronous parity updates. While an
ingestion response waits for the archive to write the data
before being sent, it does not need to wait for the parity
updates. As the number of clients increases, the system is
able to take advantage of the increased aggregate requests
of the clients to achieve system throughput of 4.66 MB/s
for extraction and 2.86 MB/s for ingestion. One goal for
future work is to improve system throughput by imple-
menting asynchronous communication in the client.

4.2 User Data Recovery

In the event that the index over a user’s shards is lost or
damaged, user data (including the index, if it was stored
in POTSHARDS) can be recovered from the shards them-
selves. To begin the procedure, the user would authenti-
cate herself to each of individual archives and obtain all
of her shards. The user would then apply the algorithm
described in Section 2.2 to rebuild the fragments.

We ran experiments to measure the speed of the recov-
ery process for both algorithm options. While the recov-
ery process is not fast enough to use as the sole extraction
method, it is fast enough for use as a recovery tool. Fig-

Name Space Shards False Rings Time

16 bits 4190 24451 6715 sec
32 bits 4190 0 225 sec

Table 3: Recovery time in a name space with 5447 allocated
names for two different name space sizes.

ure 7 shows the recovery times for two different secret
splitting parameters. Using the ring heuristic provides
a near-linear recovery time as the number of shards in-
creases, and is much faster than the naı̈ve approach. In
contrast, recovery without using the ring heuristic results
in an exponential growth. This is very apparent in Fig-
ure 7(b), which must potentially try each path three times.
The ring heuristic provides an additional layer of security
because a user that can properly authenticate to all of the
archives and acquire all of their shards can recover their
data very quickly. In contrast, an intruder that cannot ac-
quire all of the needed shards must search in exponential
time.

The density of the name space has a large effect on the
time required to recover the shards. As shown in Table 3, a
sparse name space results in fewer false shard rings (none
in this experiment) and is almost 30 times faster than a
densely packed name space. An area of future research
is to design name allocation policies that balance the re-
covery times with the security of the shards. One simple
option would be to utilize a sliding window into the name
space from which names are drawn. As the current win-
dow becomes saturated it moves within the name space.
This would ensure adequate density for both new names
and existing names.

4.3 Archive Reconstruction

The archive recovery mechanisms were validated on our
local system using eight 1.5 GB archives. Each redun-
dancy group in the experiment contained 8 virtual disks
encoded using RAID 5. A 25 MB client workload was
ingested into the system using 2 of 2 XOR and 2/3
Shamir, which resulted in 150 MB of total client data
not including the appropriate parity. After the workload
was ingested, an archive was failed. The recovery man-
ager sent reconstruction requests to all of the available
archives and waited for successful responses from a fail-
over archive. Once the procedure completed, the contents
of the failed archive and the reconstructed archive were
compared. This procedure was run 3 times—recovering
at 14.5 MB/s—with the verification proving successful on
each trial. The procedure was also run with faults injected
into the recovery process to ensure that the verification
process was correct.

11



System Secrecy Authorization Integrity Blocks for Compromise Migration

FreeNet encryption none hashing 1 access based
OceanStore encryption signatures versioning m (out ofn) access based

FarSite encryption certificates merkle trees 1 continuous relocation
PAST encryption smart-cards immutable files 1

Publius encryption password (delete) retrieval based m (out ofn)
SNAD / Plutus encryption encryption hashing 1

GridSharing secret splitting replication 1
PASIS secret splitting repair agents, auditing m (out ofn)

CleverSafe information dispersal unknown hashing m (out ofn) none
Glacier user encryption node auth. signatures n/a

Venti none retrieval n/a
LOCKSS none vote based checking n/a site crawling

POTSHARDS secret splitting pluggable algebraic signatures O(Rm−1) device refresh

Table 4: Capability overview of the storage systems described in Section 5. “Blocks to compromise” lists the number of data
blocks needed to brute-force recover data given advanced cryptanalysis; for POTSHARDS, we assume that an approximate pointer
points toR shard identifiers. “Migration” is the mechanism for automatic replication or movement of data between nodes in the
system.

5 Related Work

The design concepts and motivation for POTSHARDS de-
rive from various research projects, ranging from general-
purpose distributed storage systems to distributed content
delivery systems, to archival systems designed for short-
term storage and archival systems designed for very spe-
cific uses such as public content delivery. However, none
of these systems, a representative sample of which is sum-
marized in Table 4, has the combination of long-term
data security and proof against obsolescence that POT-
SHARDS provides.

Many systems such as OceanStore [16, 23], FAR-
SITE [1], PAST [24], SNAD [18], and Plutus [14] rely on
the explicit use of keyed encryption to provide file secrecy.
While this may work reasonably well for short-term file
secrecy, it is less than ideal for the very long-term storage
problem that POTSHARDS is addressing. Further evi-
dence that POTSHARDS is designed for a different target
can be found in the design tradeoffs made in the systems
mentioned previously. For example, FARSITE uses pure
replication rather than erasure coding in order to provide
for better read performance. In contrast, the design em-
phasis on POTSHARDS is reliability for very long-term
storage.

Other storage projects that use distributed storage tech-
niques but rely on keyed encryption for file secrecy
do not provide any method for ensuring long-term file
persistence. These systems, such as Glacier [13] and
Freenet [5], are designed to deal with the specific needs
of content delivery as opposed to to the requirements of
long-term storage. An archival storage system must ex-
plicitly address the problem of ensuring the persistence of
the system’s contents.

Storage systems such as Venti [21] and Elephant [25]
are concerned with archival storage but tend to focus on
the near-term time scale. Both systems are based on the
philosophy that inexpensive storage makes it feasible to
store many versions of data. These systems, and oth-
ers that employ “checkpoint” style backups, do not di-
rectly address the security concerns of the data content
nor do they address the needs of long-term archival stor-
age. Venti and commercial systems such as the EMC Cen-
tera [12] use content-based storage techniques to achieve
their goals, naming blocks based on a secure hash of their
data. This approach increases reliability by providing an
easy way to verify the content of a block against its name.

LOCKSS [17], Intermemory [9] and other similar sys-
tems are aimed at long-term storage of open content, pre-
serving digital data for libraries and archives where file
consistency and accessibility are paramount. These sys-
tems are developed around the core idea of very long-term
access for public information; thus file secrecy is explic-
itly not part of the design.

The PASIS architecture [11, 33], GridSharing [31], and
CleverSafe [6] avoid the use of keyed encryption by using
secret-splitting(k,m) threshold schemes [4, 20, 22, 28].
While this approach prevents the introduction of the sin-
gular point of failure that keyed encryption introduces to
a system, these systems only use one level of secret split-
ting, in effect combining the secrecy and redundancy as-
pects of the systems. While related, these two elements of
security are, in many respects, orthogonal to one another.
Combining the secrecy and redundancy aspects of the sys-
tem also has the possible effect of introducing compro-
mises into the system by restricting the choices of secret
splitting schemes. An earlier paper on POTSHARDS [30]
discussed these mechanisms, but lacked implementation

12



details and left many issues unanswered. By splitting
secrecy and redundancy into separate mechanisms, POT-
SHARDS is able to implement a security mechanism op-
timized for redundancy or secrecy.

None of PASIS, CleverSafe, or GridSharing are de-
signed to prevent attacks by insiders at one or more sites
who can determine which pieces they need from other
sites and steal those specific blocks of data. PASIS ad-
dressed the issue of refactoring secret shares [32]; how-
ever, this approach could compromise the system unless
very carefully done because the refactoring process would
have to read enough information in aggregate to rebuild
the data. By keeping this on separate nodes, the PASIS
designers hoped to avoid information leakage.

The technique for distributed rebuilding to recover from
a lost archive implemented in POTSHARDS is not new,
though the approach to keep distributed data secret is
novel. Disaster recovery has long been a concern for
storage systems [15]; Stonebraker and Schloss first in-
troduced distributed RAID [29] to provide redundancy
against site failure via geographic distribution and RAID-
style algorithms. Later systems such as Myriad [3] and
OceanStore [16, 23] expanded this approach to use more
general redundancy techniques includingm/n error cor-
recting codes.

6 Future Work

While we have designed and implemented an infrastruc-
ture that supports secure long-term archival storage with-
out the use of encryption, there are still some outstanding
issues. POTSHARDS assumes that individual archives
are relatively reliable; however, automated maintenance
of large-scale archival storage remains challenging [2].
This issue is particularly critical for systems that must sur-
vive for decades to centuries; changes in basic hardware
will almost certainly occur, yet the individual archives
must evolve with these changes. For example, power-
managed disk arrays have recently become attractive al-
ternatives to tape [7]. We plan to explore the construc-
tion of archives from autonomous power-managed de-
vices that can distribute and replicate storage amongst
themselves, reducing the level of human intervention to
replacing disks when sufficiently many have failed.

Another area of research we plan to pursue is in im-
proving the security of POTSHARDS. Currently, POT-
SHARDS depends on strong authentication and intrusion
detection to keep data safe, but it is not clear how to detect
intrusions that may occur over many years. We are ex-
ploring approaches that can refactor the data [32] so that
partial progress in an intrusion can be erased by making
new shards “incompatible” with old shards. Unlike the

failure of an encryption algorithm, which would neces-
sitate wholesale re-encryption of a set of large archives
as quickly as possible, refactoring for security could be
done over time to limit the window over which a slow at-
tack could succeed. We are considering integrating refac-
toring into the process of migrating data to new storage
devices. We would also like to reduce the storage over-
head in POTSHARDS, and are considering several ap-
proaches to do so. Some information dispersal algorithms
may have lower overheads than Shamir secret splitting;
we plan to explore their use, assuming that they maintain
the information-theoretic security provided by our current
algorithm.

The research in POTSHARDS is only concerned with
preserving the bits that make up files; understanding
the bits is an orthogonal problem that must also be
solved. Lorie and others have begun to address this prob-
lem [8], but maintaining the semantic meanings of bits
over decades-long periods may prove to be an even more
difficult problem than securely maintaining the bits them-
selves.

7 Conclusions

This paper introduced POTSHARDS, a system designed
to provide secure long-term archival storage. The long
data lifetimes required of modern archival storage systems
present new challenges and new security threats that POT-
SHARDS addresses.

In developing POTSHARDS, we made several key con-
tributions to secure long-term data archival. First, we
use multiple layers of secret splitting, approximate point-
ers, and archives located in independent authorization do-
mains to ensure secrecy, shifting security of long-lived
data away from a reliance on encryption. The combina-
tion of secret splitting and approximate pointers forces an
attacker to steal an exponential number of shares in or-
der to reconstruct a single fragment of user data; because
he does not know which particular shares are needed, he
must obtainall of the possibly-required shares. Second,
we demonstrated that a user’s data can be rebuilt in a
relatively short time from the stored sharesonly if suffi-
ciently many pieces can be acquired. Even a sizable (but
incomplete) fraction of the stored pieces from a subset of
the archives will not leak information, ensuring that data
stored in POTSHARDS will remain secret. Third, we
made intrusion detection easier by dramatically increas-
ing the amount of information that an attacker would have
to steal and requiring a relatively unusual access pattern
to mount the attack. Fourth, we ensure long-term data
integrity through the use of RAID algorithms across mul-
tiple archives, allowing POTSHARDS to utilize hetero-

13



geneous storage systems with the ability to recover from
failed or defunct archives and a facility to migrate data to
newer storage devices.

Our experiments show that the current prototype im-
plementation can store nearly 3 MB/s of user data and
retrieve user data at 5 MB/s. Since POTSHARDS is an
archival storage system, throughput is more of a con-
cern than latency, and these throughputs exceed typical
long-term data creation rates for most environments. The
storage process is parallelizable, so additional clients in-
crease throughput until the archives’ maximum through-
put is reached, and additional archives linearly increase
maximum system throughput.

By addressing the long-term threats to archival data
while providing reasonable performance, POTSHARDS
provides reliable data protection specifically designed for
the unique challenges of archival storage. Storing data in
POTSHARDS ensures not only that it will remain avail-
able for decades to come, but also that it will remain se-
cure and can be recovered by authorized users even if all
indexing is lost.

Acknowledgments

We would like to thank our colleagues in the Storage
Systems Research Center (SSRC) who provided valuable
feedback on the ideas in this paper, helping us to refine
them. We particularly thank Erez Zadok and Andrew Le-
ung for reading early drafts of this paper. We also thank
the sponsors of the SSRC, including Los Alamos Na-
tional Lab, Livermore National Lab, Sandia National Lab,
Hewlett-Packard Laboratories, IBM Research, Intel, Mi-
crosoft Research, Network Appliance, Rocksoft, Syman-
tec, and Yahoo.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment.
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Boston, MA,
Dec. 2002. USENIX.

[2] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos,
P. Maniatis, T. Giuli, and P. Bungale. A fresh look at the
reliability of long-term digital storage. InProceedings of
EuroSys 2006, pages 221–234, Apr. 2006.

[3] F. Chang, M. Ji, S.-T. A. Leung, J. MacCormick, S. E.
Perl, and L. Zhang. Myriad: Cost-effective disaster tol-
erance. InProceedings of the 2002 Conference on File
and Storage Technologies (FAST), San Francisco, CA, Jan.
2002.

[4] S. J. Choi, H. Y. Youn, and B. K. Lee. An efficient dis-
persal and encryption scheme for secure distributed in-
formation storage.Lecture Notes in Computer Science,
2660:958–967, Jan. 2003.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46+,
2001.

[6] CleverSafe. Highly secure, highly reliable,
open source storage solution. Available from
http://www.cleversafe.org/, June 2006.

[7] D. Colarelli and D. Grunwald. Massive arrays of idle
disks for storage archives. InProceedings of the 2002
ACM/IEEE Conference on Supercomputing (SC ’02), Nov.
2002.

[8] H. M. Gladney and R. A. Lorie. Trustworthy 100-year dig-
ital objects: Durable encoding for when it’s too late to ask.
ACM Transactions on Information Systems, 23(3):299–
324, July 2005.

[9] A. V. Goldberg and P. N. Yianilos. Towards an archival
intermemory. InAdvances in Digital Libraries ADL’98,
pages 1–9, April 1998.

[10] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 1999.

[11] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Re-
iter. Efficient Byzantine-tolerant erasure-coded storage.
In Proceedings of the 2004 International Conference on
Dependable Systems and Networking (DSN 2004), June
2004.

[12] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and J. Schindler. Deconstructing com-
modity storage clusters. InProceedings of the 32nd In-
ternational Symposium on Computer Architecture, pages
60–71, June 2005.

[13] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive cor-
related failures. InProceedings of the 2nd Symposium on
Networked Systems Design and Implementation (NSDI),
Boston, MA, May 2005. USENIX.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: scalable secure file sharing on untrusted
storage. InProceedings of the Second USENIX Confer-
ence on File and Storage Technologies (FAST), pages 29–
42, San Francisco, CA, Mar. 2003. USENIX.

[15] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes.
Designing for disasters. InProceedings of the Third
USENIX Conference on File and Storage Technologies
(FAST), San Francisco, CA, Apr. 2004.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture
for global-scale persistent storage. InProceedings of the
9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Cambridge, MA, Nov. 2000. ACM.

[17] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosen-
thal, and M. Baker. The LOCKSS peer-to-peer digital

14



preservation system.ACM Transactions on Computer Sys-
tems, 23(1):2–50, 2005.

[18] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C.
Reed. Strong security for network-attached storage. In
Proceedings of the 2002 Conference on File and Stor-
age Technologies (FAST), pages 1–13, Monterey, CA, Jan.
2002.

[19] L. Peterson, S. Muir, T. Roscoe, and A. Klingaman. Plan-
etLab Architecture: An Overview. Technical Report
PDN–06–031, PlanetLab Consortium, May 2006.

[20] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems.Software—Practice and
Experience (SPE), 27(9):995–1012, Sept. 1997. Correc-
tion in James S. Plank and Ying Ding, Technical Report
UT-CS-03-504, U Tennessee, 2003.

[21] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. InProceedings of the 2002 Conference
on File and Storage Technologies (FAST), pages 89–101,
Monterey, California, USA, 2002. USENIX.

[22] M. O. Rabin. Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance.Journal of the
ACM, 36:335–348, 1989.

[23] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: the OceanStore prototype. In
Proceedings of the Second USENIX Conference on File
and Storage Technologies (FAST), pages 1–14, Mar. 2003.

[24] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. InProceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), pages
188–201, Banff, Canada, Oct. 2001. ACM.

[25] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in the
Elephant file system. InProceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP ’99),
pages 110–123, Dec. 1999.

[26] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,
A. Hospodor, and S. Ng. Disk scrubbing in large archival
storage systems. InProceedings of the 12th Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS
’04), pages 409–418. IEEE, Oct. 2004.

[27] T. Schwarz, S. J. and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. InProceedings of the 26th International Con-
ference on Distributed Computing Systems (ICDCS ’06),
Lisboa, Portugal, July 2006. IEEE.

[28] A. Shamir. How to share a secret.Communications of the
ACM, 22(11):612–613, Nov. 1979.

[29] M. Stonebraker and G. A. Schloss. Distributed RAID—a
new multiple copy algorithm. InProceedings of the 6th In-
ternational Conference on Data Engineering (ICDE ’90),
pages 430–437, Feb. 1990.

[30] M. Storer, K. Greenan, E. L. Miller, and C. Maltzahn.
POTSHARDS: Storing data for the long-term without en-
cryption. In Proceedings of the 3rd International IEEE
Security in Storage Workshop, Dec. 2005.

[31] A. Subbiah and D. M. Blough. An approach for fault tol-
erant and secure data storage in collaborative work envi-
ronements. InProceedings of the 2005 ACM Workshop on
Storage Security and Survivability, pages 84–93, Fairfax,
VA, Nov. 2005.

[32] T. M. Wong, C. Wang, and J. M. Wing. Verifiable secret
redistribution for threshold sharing schemes. Technical
Report CMU-CS-02-114-R, Carnegie Mellon University,
Oct. 2002.

[33] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,
H. Kiliççöte, and P. K. Khosla. Survivable storage sys-
tems.IEEE Computer, pages 61–68, Aug. 2000.

[34] L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store:
An archival storage system architecture. InProceedings
of the 21st International Conference on Data Engineering
(ICDE ’05), Tokyo, Japan, Apr. 2005. IEEE.

15


