
Ceph: A Scalable Object-Based Storage
System

Technical Report UCSC-SSRC-06-01
March 2006

Sage A. Weil Feng Wang Qin Xin
sage@cs.ucsc.edu cyclonew@cs.ucsc.edu qxin@cs.ucsc.edu

Scott A. Brandt Ethan L. Miller Darrell D. E. Long
scott@cs.ucsc.edu elm@cs.ucsc.edu darrell@cs.ucsc.edu

Carlos Maltzahn
carlosm@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/



Ceph: A Scalable Object-Based Storage System

Sage A. Weil Feng Wang Qin Xin Scott A. Brandt Ethan L. Miller
Darrell D. E. Long Carlos Maltzahn

Storage Systems Research Center
University of California, Santa Cruz

{sage, cyclonew, qxin, scott, elm, darrell, carlosm}@cs.ucsc.edu

Abstract

The data storage needs of large high-performance and
general-purpose computing environments are generally
best served by distributed storage systems. Traditional so-
lutions, exemplified by NFS, provide a simple distributed
storage system model, but cannot meet the demands of
high-performance computing environments where a sin-
gle server may become a bottleneck, nor do they scale
well due to the need to manually partition (or repar-
tition) the data among the servers. Object-based stor-
age promises to address these needs through a simple
networked data storage unit, the Object Storage Device
(OSD) that manages all local storage issues and exports
a simple read/write data interface. Despite this sim-
ple concept, many challenges remain, including efficient
object storage, centralized metadata management, data
and metadata replication, and data and metadata reliabil-
ity. We describe Ceph, a distributed object-based stor-
age system that meets these challenges, providing high-
performance file storage that scales directly with the num-
ber of OSDs and Metadata servers.

1 Introduction

For performance and capacity reasons, the data stor-
age needs of large high-performance and general-purpose
computing environments are best served by distributed
storage systems. Traditional solutions, exemplified by
NFS [25], provide a straightforward distributed storage
model in which each server exports a file system hierar-
chy that can be mounted and mapping into the local file
system name space. While widely used and highly effec-
tive, this model was originally designed for small, low-
performance (by modern standards) storage systems and
is relatively inflexible, difficult to grow dynamically, and
incapable of providing performance that scales with the
number of servers in a system (except in particularly for-
tuitous circumstances).

Object-based storage [21] promises to address these
limitations through a simple networked data storage unit,
the Object Storage Device (OSD). Each OSD consists of
a CPU, network interface, local cache, and storage device
(disk or small RAID configuration), and exports a high-
level data object abstraction on top of the disk (or RAID)
block read/write interface. By managing low-level stor-
age details such as allocation and disk request scheduling
locally, OSDs provide a building-block for scalability.

Conceptually, object-based storage provides an attrac-
tive model for distributed storage. However, there are
many issues that need to be addressed in the develop-
ment of a reliable, scalable, high-performance object-
based storage system. These include metadata manage-
ment, object management, data distribution, reliability,
and replication, among others.

We present Ceph, a prototype distributed object-based
storage system that meets these challenges, providing
high-performance file storage that scales linearly with
the number of OSDs and Metadata servers. Designed
for multi-petabyte general-purpose and high-performance
scientific installations with aggregate throughput of up to
1 TB/s to and from tens of thousands of clients, Ceph pro-
vides a robust and effective metadata management archi-
tecture, an efficient object file system, an effective data
distribution mechanism to assign file data to objects, a ro-
bust reliability mechanism to deal with the frequent fail-
ures that can be expected in peta-scale file systems, and
the ability to scale the system dynamically as new OSDs
and metadata servers are added.

The Ceph storage system architecture is based upon a
collection of OSDs connected by high-speed networks. A
key advantage of OSDs is the ability to delegate low-level
block allocation and synchronization for a given segment
of data to the device on which it is stored, leaving the file
system to choose only which OSD a given segment should
be placed. Since this decision is simple and distributable,
each OSD need only manage concurrency locally, allow-



ing a file system built from thousands of OSDs to achieve
massively parallel data transfers.

Ceph’s clustered metadata management architecture,
Dynamic Subtree Partitioning [38], provides high perfor-
mance, scalability, and reliability. It dynamically redele-
gates and, as needed, replicates responsibility for subtrees
of the metadata hierarchy among the metadata servers
(MDSs) in the cluster to balance the workload, manage
hot spots, and allow for automatic scaling when new meta-
data servers are added.

Running on each OSD, our object-based file system is
based upon a flat object name space, employing a clus-
ter of metadata servers to translate human-readable names
into a file identifier and, ultimately, object identifiers. A
special-purpose object file system, OBFS [35], provides
high-performance object storage for OSDs with relatively
little code, taking advantage of the flat name space, lack
of directories, and lack of inter-object locality to manage
objects much more efficiently than is possible with typical
file systems.

Any large file system requires the ability to add storage
in the form of new OSDs (or remove old ones). To allow
storage scalability without sacrificing parallelism, Ceph
utilizes RUSH [14, 15], a family of algorithms that allo-
cate objects to OSDs. RUSH allows for fast and random
allocation of objects (for load balancing) but, unlike sim-
ple hashing, allows new OSDs to be added to (or removed
from) the system without the overhead usually required
to rehash and relocate existing objects. RUSH also fa-
cilitates replication of objects across multiple OSDs for
redundancy.

The raw number of commodity hard drives required
to store petabytes of data means that our storage system
can be expected to have frequent drive failures. Research
has shown that traditional RAID cannot adequately pro-
tect the system from data loss, even in the short term.
FaRM [41, 42] address this problem, rapidly reconstruct-
ing lost disks on an object-by-object basis and providing
the high reliability required of such systems.

Developed separately, these components have now
proven effective as part of the overall Ceph architecture.
We present the design in greater detail, and discuss how
Ceph, and the object-based storage model in general, pro-
vides reliable, scalable, high-performance file system ser-
vices. Our results show that Ceph meets its goals in pro-
viding high performance, flexibility, and scalability.

2 System Architecture

The Ceph architecture contains four key components: a
small cluster of metadata servers (MDSs) that manage the
overall file system name space, a large collection of ob-

ject storage devices (OSDs) that store data and metadata,
a client interface, and a high-speed communications net-
work.

2.1 Metadata Management
Metadata operations make up as much as 50% of typical
file system workloads [27], making the MDS cluster crit-
ical to overall system performance. Ceph utilizes a dy-
namic metadata management infrastructure based on Dy-
namic Subtree Partitioning [38] to facilitate efficient and
scalable load distribution across dozens of MDS nodes.
Although metadata (like data) is ultimately stored on disk
in a cluster of OSDs, the MDS cluster maintains a large
distributed in-memory cache to maximize performance.
Ceph uses a primary-copy replication approach to man-
age this distributed cache, while a two-tiered storage strat-
egy optimizes I/O and facilitates efficient on-disk layout.
A flexible load partitioning infrastructure uses efficient
subtree-based distribution in most cases, while allowing
hashed distribution to cope with individual hot spots.

The primary-copy caching strategy makes a single au-
thoritative node responsible for managing cache coher-
ence and serializing and committing updates for any given
piece of metadata. While most existing distributed file
systems employ some form of static subtree-based parti-
tioning to delegate this authority, some recent and experi-
mental file systems have tried hash functions to distribute
directory and file metadata, effectively sacrificing local-
ity for load distribution. Both approaches have critical
limitations: static subtree partitioning fails to cope with
dynamic workloads and data sets, while hashing destroys
metadata locality and critical opportunities for efficient
MDS prefetching and storage.

Ceph’s metadata server cluster is based on a dynamic
metadata management design that allows it to dynami-
cally and adaptively distribute cached metadata hierarchi-
cally across a set of MDS nodes. Arbitrary and variably-
sized subtrees of the directory hierarchy can be reassigned
and migrated between MDS nodes to keep the workload
evenly distributed across the cluster. This distribution
is entirely adaptive and based on the current workload
characteristics. A load balancer monitors the popular-
ity of metadata within the directory hierarchy and peri-
odically shifts subtrees between nodes as needed. The
resulting subtree based partition it kept coarse to mini-
mize prefix replication overhead and preserve locality. In
the Ceph prototype, the choice of subtrees to migrate is
based on a set of heuristics designed to minimize parti-
tion complexity—and the associated replication of prefix
inodes—by moving toward a simpler distribution when-
ever possible. When necessary, particularly large or pop-
ular directories can then be individually hashed across the

2



cluster, allowing a wide load distribution for hot spots
only when it is needed—without incurring the associated
overhead in the general case.

Clients cache information about which MDS nodes are
authoritative for which directories in their local metadata
caches, allowing metadata operations to be directed to-
ward the MDS node authoritative for the deepest known
prefix of a given path. The relatively coarse partition
makes it easy for clients to “learn” the metadata partition
for parts of the file system they’re interested in, resulting
in very few misdirected queries. More importantly, this
basic strategy allows the MDS cluster to manipulate client
consensus on the location of popular metadata to disperse
potential hot spots and flash crowds (like 10,000 clients
opening/lib/libc.so). Normally clients learn the
proper locations of unpopular metadata and are able to
contact the appropriate MDS directly. Clients accessing
popular metadata, on the other hand, are told the meta-
data resides either on different or multiple MDS nodes,
distributing the workload across the cluster. This basic
approach allows the MDS to effectively bound the num-
ber of clients believing any particular piece of metadata
resides on any particular server at all times, thus prevent-
ing potential flash crowds from overloading any particular
node.

Although the MDS cluster is able to satisfy most meta-
data requests from its in-memory cache, all metadata up-
dates must also be committed to disk for safety. A set of
large, bounded, lazily flushed journals allows each MDS
to quickly stream its updated metadata to disk in an effi-
cient and distributed manner. The large per-MDS journal
also serves to absorb repetitive metadata updates (com-
mon to most workloads) such that when dirty metadata
are later flushed from the journal to long-term storage,
far fewer updates are required. This two-tiered strategy
provides the best from both worlds: streaming updates to
disk in an efficient (sequential) fashion, and a vastly re-
duced re-write workload allowing the long-term on-disk
storage layout to be optimized for future read access. In
particular, inodes are embedded directly within directories
(not dissimilar to C-FFS’s embedded inodes [9]), allow-
ing the MDS to exploit locality in its workload to prefetch
metadata. Inode numbers are managed with journaled up-
dates and distributed free lists, while an auxiliaryanchor
table is used to keep the rare inode with multiple hard
links globally addressable by inode number—all without
encumbering the overwhelmingly common case of singly-
linked files with an enormous, sparsely populated and
cumbersome conventional inode table. The anchor table
maintains the minimum amount of information necessary
to locate “anchored” inodes, providing a simple abstrac-

tion that will facilitate future Ceph features like snapshots
applied to arbitrary subtrees of the directory hierarchy.

The core of the MDS design is built around a set of
distributed protocols that manage distributed cache co-
herency and metadata locking hierarchies, allowing sub-
trees to be seemlessly migrated between nodes while en-
suring file system consistency with per-MDS journals. In
the event of an MDS failure, the journal can be rescanned
to both reconstruct the contents of the failed node’s in-
memory cache (for quick startup) and (in doing so) re-
cover the Ceph file system state.

2.2 Object Storage

OBFS [35] is the storage manager on each OSD—it pro-
vides object storage and manages local request schedul-
ing, allocation, and caching. Ceph files are striped across
objects to enable a high degree of parallelism, limiting
objects to the system stripe unit size and (intentionally)
destroying inter-object locality within a single OSD. De-
layed writes in the file cache at the client side absorb most
small writes and result in relatively large synchronous ob-
ject reads and writes to the OSDs (a more detailed analy-
sis of the expected object workload is provided elsewhere
[36]). OBFS exploits these design choices to simply on-
disk layout for both performance and reliability.

To maximize overall throughput without over-
committing resources to small objects, OBFS employs
multiple block sizes and usesregions (see Figure 1),
analogous to cylinder groups in FFS [20], to keep blocks
of the same size together. The block size of a region is
determined at the time that a (free) region is initialized,
which occurs when there are insufficient free blocks in
any initialized region to satisfy a write request. When
all of the blocks in an initialized region are freed, OBFS
returns the region to the free region list. OBFS uses two
block sizes: small (4 KB, the logical block size in Linux),
and large (1 MB, the system stripe unit size). Overall, this
scheme has many advantages; it minimizes file system
fragmentation, simplifies allocation, avoids unnecessary
wasted space and effectively uses the available disk
bandwidth. The use of regions also reduces the size of
other file system data structures such as free block lists
or maps and thus makes the operations on those data
structures more efficient.

Object metadata, stored inonodes, is used to track the
status of each object. Onodes are preallocated in fixed po-
sitions at the head of small block regions, similar to the
way inodes are placed in cylinder groups in FFS [20]. In
large block regions, shown in Figure 2, onodes are colo-
cated with the data block on the disk, similar to embedded
inodes [9]. This allows for very efficient metadata updates

3



Onode

0
Onode index

Free
onode
bitmap

Region ID
31

+

15

Data
block

Region
head

Onode ID

(a) Large Block Region

Onode index
15

Onode table
Free
block
bitmap

Onode ID

Region ID
0

Region
head

Free
onode
bitmap

31

Data blocks

+

(b) Small Block Region

Figure 2: Region structure and data layout.

Region n

Boot
sector

Region 1
Region
head

Free
onode
map

Data blocks and
onodes

Region
head
Free
block
bitmap

Onode
table
Free
onode
bitmap

Data blocks
Region 2

Disk

Large
block
region

Small
block
region

Figure 1: OBFS structure

as the metadata can be written with the corresponding data
block.

As shown in Figure 2, each onode has a unique 32-bit
identifier consisting of two parts: a 16 bit region identi-
fier and a 16 bit in-region object identifier. If a region
occupies 256 MB on disk, this scheme will support OSDs
of up to 16 TB, and larger OSD volumes are possible with
larger regions. To locate a desired object, OBFS first finds
the region using the region identifier and then uses the in-
region object identifier to index the onode. This is partic-
ularly effective for large objects because the object index
points directly to the onode and the object data, which
are stored contiguously. In the current implementation,
onodes for both large and small objects are 512 bytes, al-
lowing OBFS to avoid using indirect blocks entirely: the
maximum size of a small object will always be less than
the stripe unit size, which is 1 MB in our design, ensuring
that block indices will fit inside the onode.

An Object Lookup Table(OLT) manages the mapping
between object identifiers and onode identifiers. The size
of the OLT is proportional to the number of objects in

the OSD and remains quite small: with 20,000 objects
residing in an OSD, the OLT requires only 233 KB. For
efficiency, the OLT is loaded into main memory and up-
dated asynchronously. A Region Head List (RHL) stores
information about each region in the file system, includ-
ing pointers to the free block bitmap and the free onode
bitmap. On an 80 GB disk, the RHL occupies 8 MB of
disk space. Like the OLT, the RHL is loaded into mem-
ory and updated asynchronously. After obtaining an on-
ode identifier, OBFS searches the RHL using the upper
16 bits of the onode identifier to obtain the corresponding
region type. If the onode belongs to a large block region,
the object data address can be directly calculated. Other-
wise, OBFS searches the in-memory onode cache to find
that onode, loading it from disk if the search fails.

OBFS asynchronously updates important data struc-
tures such as the OLT and the RHL to achieve better per-
formance. In order to guarantee system reliability, OBFS
updates some important information in the onodes syn-
chronously. If the system crashes, OBFS can quickly scan
all of the regions and onodes on the disk to rebuild the
OLT and the RHL. For each object, the object identifier
and the region identifier are used to assemble a new entry
in the OLT. The block addresses for each object are then
used to rebuild each region free block bitmap. Because the
onodes are synchronously updated, we can safely rebuild
the entire OLT and RHL and restore the system. OBFS
updates onode metadata either without an extra disk seek
or with one short disk seek (depending on object type). In
so doing, it keeps the file system reliable and maintains
system integrity with very little overhead.

2.3 OSD Cluster Management

Ceph’s OSD cluster is used for storing both data and meta-
data (although the same set of disks need not be respon-
sible for both). Intelligent OSDs allow data replication,
failure detection and recovery activities take place semi-
autonomously under the supervision of the MDS cluster.

4



This intelligence in the storage layer allows the OSD clus-
ter to collectively provide a reliable, scalable, and high-
performance object storage service to client and MDS
nodes.

2.3.1 Data Distribution Using RUSH

In Ceph, the contents of each file are striped over a se-
quence of objects stored on OSDs. To ensure that tens
of thousands of clients can access pieces of a single file
spread across thousands of object-based disks, Ceph must
use a distribution mechanism free of central bottlenecks.
This mechanism must accommodate replication, allow for
the storage system to be easily expanded, and preserve
load balance in the face of added capacity or drive fail-
ures. We chose the RUSHR variant of the RUSH [15]
algorithm to distribute data because it meets all of these
goals.

The RUSH algorithm first maps a〈fileId,offset〉 pair
into one of a large number (107) of redundancy groups.
A redundancy group is a collection of data blocks (ob-
jects) and their associated replicas or parity blocks. There
are several ways to use the redundancy groups, includ-
ing mirroring, parity, and more advanced erasure cod-
ing schemes, with the trade-offs between the different re-
dundancy mechanisms lying in the complexity of parity
management and recovery operations, the bandwidth con-
sumed by recovery [37], and the storage efficiency. RUSH
performs a second mapping that identifies all of the OSDs
on which a redundancy group is stored, with the guaran-
tee that no OSD will appear twice in the list. Since Ceph
currently uses replication, it stores then replicas of the
objects in the redundancy group on the firstn operational
OSDs in the list. The only other input into this mapping is
a list of 〈numDisks,weight〉 tuples describing each clus-
ter of OSDs that has been added to the system, where
numDisksis the size of the cluster added andweight is
a weight for the new disks relative to other disks in the
system. Theweight parameter can be used to bias the
distribution of objects to OSDs, as would be necessary
if, for example, newer disks had a higher capacity than
older disks. The mapping process is very fast, requiring
less than 1µs per cluster to compute; for a system that
had 100 clusters added, this mapping would take less than
100µs. Ceph additionally must keep a list of failed OSDs
so it can skip over them when selecting OSDs from the
list generated by the RUSH mapping. These lists change
slowly—on the order of a few times per day at most—
and are small, allowing them to be cached cached at each
client. Most importantly, clients are able to quickly locate
file data based only on afileId (inode number) and file
offset, without consulting a central metadata server.

Disk number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
ap

ac
ity

 (
1 

=
 a

ve
ra

ge
)

0

0.2

0.4

0.6

0.8

1

1.2

(a) Data distribution across a system with 16 nodes. The system
was built incrementally, starting with 8 disks, adding 4 more,
and then adding 4 more for a total of 16 disks.

Disk number
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
ap

ac
ity

 (
1 

=
 a

ve
ra

ge
)

0

0.2

0.4

0.6

0.8

1

1.2

(b) Data distribution across a cluster of 32 nodes with one node
failed. This system was built from the system in the graph above
by adding 16 disks all at once, and declaring disk 20 as failed.

Figure 3: Data distribution balance using RUSH.

By generating a list with more replicas than absolutely
required, Ceph can handle OSD failures by making an ad-
ditional replica of each affected group on the next OSD
in the list. Since each redundancy group on an OSD has
a distinct list, it is likely that an OSD failure will result
in the new replicas for the groups being placed on differ-
ent OSDs, increasing reconstruction speed and decreas-
ing the likelihood that a second failure will occur before
the system has restored the necessary level of replica-
tion. The RUSH algorithm probabilistically guarantees
that data will be distributed evenly (modulo weighting)
across all of the OSDs, regardless of the number of clus-
ters added to the system or the number of individual OSDs
that have failed, as shown in Figure 3.

2.3.2 Replication

Object replication is managed in terms of the redun-
dancy groups (a collection of objects, as described in Sec-
tion 2.3.1) and the associated list of OSDs. In the Ceph
prototype, these OSDs are used to store whole object
replicas forn-way replication; parity and erasure coding

5



schemes are also possible, but not implemented. Within
each redundancy group, the first OSD is responsible for
storing the primary copy of an object and managing repli-
cation, while the following one or more OSDs store repli-
cas. Each OSD will participate in many thousands of re-
dundancy groups made up of a different (and seemly ran-
dom) sets of OSDs, and will act in a different role (pri-
mary or replica) for each.

All object read and write operations are directed to the
redundancy group’s primary OSD, which is ultimately re-
sponsible for ensuring an object’s reliable storage (both
locally and on the replica OSDs). Read operations can
be satisfied locally either from the OSDs buffer cache or
by reading from the local disk. (Although it is tempt-
ing to balance read traffic across an object’s replicas, this
only complicates replication without benefit; RUSH al-
ready distributes load evenly across OSDs.)

In the case of object writes and updates, the primary
OSD forwards the request on to the replica(s) before com-
mitting the changes locally, and does not acknowledge the
operation until the update is safely stored both on the local
disk and in the buffer cache on the replica OSD(s). This
approach allows the latency of replication to be masked
by that of the local disk write, while freeing the OSD
user from dealing with any replication-related activities
(and related consistency considerations). It is also likely
that the internal OSD network bandwidth will be greater
than the external bandwidth in typical installations, mak-
ing this a desirable (and often ideal) network data path.
The primary OSD is then responsible for maintaining cer-
tain local state to ensure that updated objects are subse-
quently committed to disk on replicas.

This choice of when to acknowledge a write as “safe”
is based on consideration of the most common failure sce-
narios. If the primary OSD fails, the write isn’t acknowl-
edged, and the user can retry. If the replica fails, the pri-
mary will re-copy affected objects to a new replica during
the recovery process based on its receipt of an “in buffer”
but no “on disk” acknowledgment. And in a correlated
failure (like a power outage), the data is either never ac-
knowledged or safely on disk on the primary OSD.

2.3.3 Failure Detection and Recovery

OSD failure detection in Ceph is fully distributed, while
being centrally managed by the MDS cluster. Although
failure modes that do not include network disconnec-
tion (like local file system or media defects) involve self-
reporting by OSDs to the MDS cluster, communication
failure detection requires active monitoring and by neces-
sity a distributed approach in a cluster of 10,000 or more
OSDs. Each OSD in Ceph is responsible for monitoring a
small set of its peers, and notifying an MDS of any com-

munication problems detected. Overlapping monitoring
groups are assigned by a pseudo-random hash function,
such that each OSD monitorsn other OSDs and is con-
versely monitored byn peers. We use the RUSH function
for peer set assignment, although not all of its properties
are required. Liveness information piggybacks on exist-
ing inter-OSD (replication) chatter or explicit “ping” mes-
sages when necessary. The MDS cluster collects failure
reports and verifies failures to filter out transient or sys-
temic problems (like a network partition) centrally. This
combination of distributed detection and a centralized co-
ordinator in Ceph takes the best from both worlds: it al-
lows fast detection without unduly burdening the MDS
cluster, and resolves the occurrence of inconsistency with
the arbitrament of the MDS cluster.

Non-responsive OSDs are initially marked asdown to
indicate a potentially transient failure. During this period
the next replica in each redundancy group works as the
acting primaryby completing write requests locally. If
the primary OSD recovers, a log is used to resynchronize
redundancy group content. If the OSD does not recover
after some interval, it is marked asfailed and recovery
is initiated, at which point the acting primary becomes the
new primary and the objects in each redundancy group are
replicated to the next replica in line. OSD state changes
are distributed to active clients and OSDs via an epidemic-
style broadcast (piggybacking on existing messages when
possible). Clients attempting to access a newly failed disk
simply time out and retry OSD operations until a new
OSD status (downor failed) is learned, at which point re-
quests are redirected toward the new or acting primaries.

Ceph’s RUSH-based data distribution algorithm uti-
lizes FaRM [41, 42], a distributed approach to fast fail-
ure recovery. Because replicas for the objects stored on
any individual OSD are declustered across a large set of
redundancy groups and thus OSDs, failure recovery can
proceed in a parallel and distributed manner as the set
OSDs with replicas copy objects to a new (similarly dis-
tributed) set of OSDs. This approach eliminates the disk
“rebuild” bottleneck typical of traditional RAID systems
(in which recovery in limited by a single disk’s write
bandwidth), thus greatly speeding the recovery process
and minimizing the window of opportunity for a subse-
quent failure to cause data loss. Prior research has shown
that FaRM’s fast recovery can reduce a large storage sys-
tem’s probability of data loss by multiple orders of mag-
nitude.

2.3.4 Scalability

The Ceph prototype stripes file data across 1 MB objects,
scattered across different OSDs. In contrast to object-
based storage systems like Lustre [3, 30] that stripe data

6



over a small set of very large objects, Ceph instead relies
on a large set of medium-sized and well distributed ob-
jects. This approach simultaneously allows massive I/O
parallelism to both individual large files, whose contents
may be spread across the entire OSD cluster, and large sets
of smaller files. We believe the 1 MB object size provides
a good tradeoff between seek latency and read or write
time in individual OSD workloads—which exhibit little
or no locality in a large system—while scaling in terms
of both aggregate and single file performance. The Ceph
architecture accommodates arbitrary striping strategiesas
well, including arbitrary stripe widths, stripe set sizes,and
objects sizes. This flexibility allows one to trade single
file parallel throughput for the preservation of some local-
ity in OSD workloads and small gains in OSD efficiency
under streaming applications.

The RUSH data distribution allows Ceph storage to
scale by providing a balanced, random data distribution
that facilitates OSD cluster expansion with minimal data
relocation. By defining the mapping process recursively,
RUSH results in the approximate minimal amount of data
movement that is required in order to restore balance to
disk capacities after new (empty) OSDs are added. This
allows the overall storage capacity to be expanded (or
reduced) in an optimal fashion: data movement is mini-
mized while data distribution is preserved.

More specifically, OSD cluster expansion results in
the relocation of some set of redundancy groups to new
OSDs. When each OSD learns of a cluster expansion,
it iterates over the set of redundancy groups for which it
is newly responsible (a non-trivial but reasonable com-
putation) to determine which objects it need to migrate
from the old primaries. During the migration process,
read requests for any object not yet migrated are proxied
to the old primary. Updates are committed locally, along
with additional state to track which parts of the not-yet-
migrated object are new.

2.4 Client Interface

The Ceph client combines a local metadata cache, a buffer
cache, and a POSIX call interface. Our prototype imple-
mentation is in userspace, allowing an application to ei-
ther link to it directly (as with our synthetic workloads and
trace replays), or for a Ceph file system to be mounted di-
rectly on a Linux system via a thin FUSE (user space file
system [33]) glue module.

The client communicates with the MDS cluster to open
and close files and manipulate the file name space, while
maintaining a local metadata cache both for efficiency
purposes and to “learn” the current partition of metadata
across the MDS cluster. Metadata consistency is currently

similar to that of NFS: inode information in the cache re-
mains valid for a fixed period (we use 10 seconds) be-
fore subsequentstat operations require contacting the
MDS cluster. The client reads from and writes to files by
communicating with OSDs directly: once opened, the in-
ode number and byte offset specify (via RUSH) an object
identifier and OSD to interact with. A buffer cache serves
to filter out redundant file I/O while maximizing the size
of file requests submitted to OSDs.

Buffer cache coherence among clients is controlled by
the MDS cluster by sending capability updates to clients
with open files. These updates can cause the client to
either flush all dirty buffers or invalidate all buffers of a
particular file. In addition to MDS-initiated buffer cache
flushes the client cleans buffers which have been dirty for
longer than a fixed time period (we use 30 seconds).

2.5 Network

The Ceph prototype currently uses a single gigabit Ether-
net switch for its network; the relatively small scale of the
system makes this feasible. This approach limits band-
width to a single node to about 80–100MB/s. Because
current disks cannot transfer data faster than this rate, gi-
gabit bandwidth is sufficient. Future OSDs will likely re-
quire faster networks, such as 10-gigabit Ethernet or other
networking technologies.

A more important concern for larger OSD systems is
that a single monolithic switch will no longer be feasible
since a large OSD system may have thousands of nodes
and require hundreds of gigabytes or terabytes per second
of total bandwidth. This network must also be reliable
in the face of a small number of link and switch failures.
The two basic approaches to such a network would be the
construction of a multi-layer switching network or a net-
work in which each OSD has its own network switch. The
latter approach may be more scalable, and resembles the
decades-old problem of building massively parallel com-
puters using relatively slow networks. The details of how
to build a large-scale interconnection network for an OSD
system are beyond the scope of this paper, but other re-
search has considered the issue [16, 43].

3 Performance
We evaluate the performance of the Ceph prototype by ex-
amining both the performance of individual subsystems
under pathological workloads, and by measuring perfor-
mance of the entire system under more typical load.

3.1 Metadata Server

We evaluated the scalability of the MDS cluster with a se-
ries of performance tests that scale the size of the OSD

7



MDS nodes
0 10 20 30 40 50 60

R
el

at
iv

e 
T

hr
ou

gh
pu

t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

makedirs

openssh+lib

openssh+include

Figure 4: Relative MDS performance as cluster size
scales under three workloads. Heavily shared directories
limit load distribution.

cluster and workload in unison with the MDS cluster size.
In all cases we use twice as many OSDs as MDS nodes
for metadata storage. An additional set of nodes (one per
MDS) is used to generate a synthetic workload, each node
running 50 independent instances of the client and associ-
ated workload generator.

Themakedirsworkload creates a huge tree of nested
directories and filesn (4) levels deep, each directory
containingm (25) children. Theopenssh+lib work-
load replays a trace of a compile of openssh with the
/usr/lib directory shared with other clients, while
openssh+include shares/usr/include instead.
Both traces include extracting the source tree, doing the
compile, and then removing everything before repeating.
In all three tests MDS performance is CPU-bound; in
practice MDS performance will additionally be limited by
memory cache size and the resulting I/O rates from cache
misses, making MDS performance further dependent on
that of the OSD cluster.

Figure 4 shows the MDS cluster scaling from 1 up to
64 nodes under the three workloads. Themakedirs
workload is trivially separable under the dynamic subtree-
based metadata partitioning scheme, resulting in almost
perfectly linear scaling1. The compilations show a re-
duction in individual MDS throughput for large cluster
sizes due to heavy traffic in shared directories. In both
tests/usr/lib or/usr/include is replicated to dis-
tribute read access, but file opens are still directed to-
ward the primary copy residing on a single node. The
openssh+lib workload fares much better because ac-

1The small divergence from perfectly linear in themakedirswork-
load is in fact most likely due to lock contention in the messaging sub-
system.

cess to the shared/usr/lib compromises only ap-
proximately 30% of the trace, versus about 65% for
openssh+include. The strangely poor performance
of the 16-node MDS cluster underopenssh+lib (the
erratic dip in Figure 4) is caused by “thrashing” in the
load balancer, due to a subtle interaction between the bal-
ancing heuristics and the workload that causes metadata to
be moved unnecessarily between MDS nodes. Although
tuning balancer parameters should resolve the issue, it’s
inclusion here highlights the importance of better intelli-
gence in the load balancing algorithm—intelligence that
is completely lacking (by design) in conventional static
subtree partitioning strategies.

In both traces scaling is limited by the separability of
the workload, specifically in terms of the replication and
distribution of popular metadata (the shared directories)
and the load distribution of the independent (per-client)
localized workload components. Although the shared
“hot spot” directories were replicated across all nodes,
file open and close operations are currently directed to-
ward the primary inode copy residing on a single node;
although the metadata architecture is designed to allow
individual directories to be hashed (thus distributing the
contents of hot directories), Ceph does not yet fully imple-
ment this feature. The irregularity in theopenssh+lib
trace also indicates the importance of a load balancer that
is robust to a wide variety of workloads. The current bal-
ancer used by Ceph does reasonably well with most work-
loads, but is still relatively primitive and can thrash in cer-
tain pathological cases (e.g.a walk of the directory tree).

Figure 5 shows the latency experienced by clients as a
4-node load balanced MDS cluster approaches saturation
under themakedirs (exclusively write) workload. The
MDS cluster is synchronously journaling metadata update
operations and committing a stream of recently created
directories to long-term storage. Typical latency experi-
enced by clients in our prototype is on the order of 1–2 ms
for metadata read operations and 3-4 ms for write opera-
tions, where the difference is due to an additional network
round trip (to the OSD) and synchronous disk write. This
latency penalty for updates can of course be avoided by
disabling Ceph’s synchronous metadata journaling (at the
expense of NFS-like safety semantics) or using NVRAM
on the MDS to mask the write latency.

3.2 File and Object Storage

For compatibility and comparison purposes we imple-
mented a simple object storage module that would func-
tion on top of any existing kernel file system. The flat
object name space was implemented by hashing object
names over a set of directories to avoid directory size

8



Throughput (requests per second)
0 2000 4000 6000 8000 10000 12000

R
es

po
ns

e 
la

te
nc

y 
(m

s)

0

1

2

3

4

5

6

7

Figure 5: Metadata latency versus throughput curve as
the cluster approaches saturation.

and lookup performance limitations present in popular file
systems like ext3. We then compared performance of the
OSDs in Ceph using both ext2/3 and the special-purpose
OBFS.

3.2.1 ext3

For Ceph metadata I/O bound workloads (such as create-
only workloads reliant on efficient MDS journaling), we
found (not unsurprisingly) that synchronous OSD write
performance was critical to metadata throughput. In par-
ticular, the use offsync() or fdatasync() on ext2
(no journaling) restricted streaming performance when
making small synchronous writes to a small number of
objects. We avoided this limitation by striping metadata
updates over a large set of (16) objects with a very small
(256-byte) stripe size. This improved performance even
when striping over a small set of (4) OSDs, suggesting
strange synchronous write behavior in ext2 and under-
scoring the importance of an OSD file system properly
tuned for Ceph workloads.

3.2.2 OBFS

We evaluated OBFS performance on an individual OSD,
as shown in Figure 6, relative to Linux XFS and ext3. We
used a synthetic workload composed of 80% of 512 KB
large objects, and 20% small objects, with small object
sizes uniformly distributed between 1 KB and 512 KB.
Disk aging effects were simulated by introducing a large
number of write/delete operations, which always main-
tained the disk usage around 60%. As we can see from
the figure, OBFS provides sustained throughput around
20 MB/sec, which improves the performance by a factor
of 40% over XFS, and double that of ext3.

Number of I/Os
0 20000 40000 60000 80000

T
hr

ou
gh

pu
t (

M
B

/s
)

0

10

20

30

40
DEF
XFS
Ext3

Figure 6: OBFS write performance on a single node

Number of Clients
8 12 16 20 24

T
hr

ou
gh

pu
t (

M
B

/s
)

0

10

20

30

40

50
DEF1024KB
DEF16KB
ext1024KB
ext16KB

Figure 7: Large file write throughput per OSD as the
number of clients scales

3.3 Large File Performance

Streaming I/Os, most common in multi-media and sci-
entific environments, can easily pass through the client
buffer cache and stress the back end storage. We evalu-
ated the streaming I/O performance by sequentially read-
ing and writing several very large files across a 6-node
OSD cluster. A single MDS was used, while a variable
number of client nodes were used to generate workload.
Each client process simply opened a very large file and se-
quentially wrote to or read from it. The I/O request sizes
varied from 16 KB to 1 MB for each run. We compare
the performance of OBFS and ext2 as the underlying file
system used for each OSD. We used ext2 over ext3 (de-
spite its poor consistency properties) because it performed
better.

Figure 7 shows the average per-OSD write throughput
as the number of clients scales. With an I/O request size
of 16 KB, 8 client nodes can easily saturate the 6-node

9



Write Segment Size

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

T
hr

ou
gh

pu
t (

M
B

/s
)

0

10

20

30

40

50
DEF
ext2

Figure 8: Large file write throughput per OSD as request
size varies

OSD cluster using the ext2 file system. The average OSD
throughput is around 8 MB/sec, which yields 48 MB/sec
overall throughput. The OSD cluster with OBFS shows
much better performance, saturating only after more than
20 client nodes were used. The average OSD through-
put is more than 20 MB/sec, for a combined through-
put of up to 120 MB/sec for this small cluster. Using
large I/O request sizes significantly improves OSD effi-
ciency: the OSD cluster with ext2 achieves an average
of 20 MB/sec throughput per OSD. OBFS demonstrates
extremely good performance under the same workload,
servicing 24 client nodes before saturating with an aver-
age per-OSD throughput of 44 MB/sec, almost 80% of the
raw disk performance.

Figure 8 shows the average OSD write performance as
the I/O request size changes. Small I/O sizes incur many
more object metadata operations on each OSD and de-
stroy the sequentiality of the original streams. By using
larger request sizes, the average OSD throughput can be
improved by a factor of two, underscoring the importance
of the client buffer cache.

3.4 Small File Performance

We evaluated the performance of the OSD cluster with
random reads and writes: small files, and all file requests
less than 4k (as would be seen without a client buffer
cache). The workload consisted of 20% reads and 80%
writes. Figure 9 shows the per-OSD throughput on a
cluster 16 OSDs as the number of client load generators
varies. Performance under this extreme workload is much
lower (just over 1 MB/sec), again emphasizing the im-
portance of the client buffer cache for coalescing small
requests whenever possible.

Number of client nodes
0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
B

/s
)

0

0.5

1

1.5

2

DEF

Ext2

Figure 9: Throughput per OSD with small 4 KB requests
as client load varies

Throughput (requests per second)
0 1000 2000 3000 4000 5000

T
ra

ce
 c

om
pl

et
io

n 
tim

e 
(s

)

0

100

200

300

400

500

600

64 clients

96 clients

128 clients

Figure 10: Compile trace completion time versus
throughput under varying client levels

3.5 Overall Performance

To evaluate the overall performance of the Ceph file sys-
tem we look at a 4 MDS, 16 OSD storage cluster with a
workload consisting of multiple clients simulating a com-
pile of openssh. Each client replays a file access trace gen-
erated from an actual compilation (including both meta-
data and data operations) in a private directory. Figure 10
shows average client completion times on they axis as a
function of system throughput (measured in the number
of metadata operations on thex axis). System throughput
in this case is limited by OSD I/O (not surprising given
the large MDS to OSD ratio) as a hundred clients hammer
only 16 disks.

4 Related Work
High-performance, scalable file systems have long been
a goal of the high-performance computing (HPC) com-

10



munity. HPC systems place a heavy load on the file sys-
tem [24, 31, 36], placing a high demand on the file system
to prevent it from becoming a bottleneck. As a result,
there have been many scalable file systems that attempt to
meet this need; however, these file systems do not support
the same level of scalability that Ceph does. Some large-
scale file systems, such as OceanStore [18] and Farsite [1]
are designed to provide petabytes of highly reliable stor-
age, and may be able to provide simultaneous access to
thousands of separate files to thousands of clients. How-
ever, these file systems are not optimized to provide high-
performance access to a small set of files by tens of thou-
sands of cooperating clients. Bottlenecks in subsystems
such as name lookup prevent these systems from meet-
ing the needs of a HPC system. Similarly, grid-based file
systems such as LegionFS [40] are designed to coordinate
wide-area access and are not optimized for high perfor-
mance in the local file system.

Parallel file and storage systems such as Vesta [7], Gal-
ley [23], RAMA [22], PVFS and PVFS2 [6, 19], the
Global File System [32] and Swift [5] have extensive sup-
port for striping data across multiple disks to achieve very
high data transfer rates, but do not have strong support
for scalable metadata access. For example, Vesta permits
applications to lay their data out on disk, and allows in-
dependent access to file data on each disk without ref-
erence to shared metadata. However, Vesta, like many
other parallel file systems, does not provide scalable sup-
port for metadata lookup. As a result, these file systems
typically provide poor performance on workloads that ac-
cess many small files as well as workloads that require
many metadata operations. They also typically suffer
from block allocation issues: blocks are either allocated
centrally or, in the Global File System, via a lock-based
mechanism. As a result, these file systems do not scale
well to write requests from thousands of clients to thou-
sands of disks. Similarly, the Google File System [10]
is optimized for very large files and a workload consisting
largely of reads and file appends, and is not well-suited for
a more general HPC workload because it does not support
high-concurrency general purpose access to the file sys-
tem.

Recently, many file systems and platforms, including
Federated Array of Bricks (FAB) [28], IceCube [17],
Lustre [3, 30], GPFS [29], the Panasas file system [39],
pNFS [13], Sorrento [34], and zFS [26] have been de-
signed around network-attached storage [11, 12] or the
closely related object-based storage paradigm [2]. All of
these file systems can stripe data across network-attached
devices to achieve very high performance, but they do not
have the combination of scalable metadata performance,

expandable storage, fault tolerance, and POSIX compat-
ibility that Ceph provides. pNFS [13] and the Panasas
object-based file system [39] stripe data across network-
attached disks to deliver very high data transfer rates, but
they both suffer from a bottleneck in metadata lookups.
Lustre [3, 30] has similar functionality: it supports nearly
arbitrary striping of data across object storage targets, but
it hashes path names to metadata servers. This approach
distributes the metadata load, but destroys locality and
makes POSIX compatibility difficult, despite approaches
such as LH3 [4]. GPFS [29] also suffers from metadata
scaling difficulties; while block allocation is largely lock-
free, as it is in most object-based storage systems, meta-
data is not evenly distributed, causing congestion in meta-
data lookups. Moreover, none of these systems permits
a client to locate a particular block of a file without con-
sulting a centralized table. Sorrento [34] alleviates this
problem somewhat and evenly distributes data and meta-
data among all of the servers, but only performs well in
environments with low levels of write sharing in which
processors work on disjoint data sets. FAB [28] focuses
on continuously providing highly reliable storage; while
its performance is acceptable, FAB provides very high
reliability at the cost of somewhat reduced performance.
Ceph takes the opposite approach: provide very high per-
formance and reasonable reliability.

5 Future Work

Ceph builds upon many distinct and active research topics
and opens up a variety of areas for future research. Now
that the basic Ceph infrastructure is in place, we can be-
gin to focus on performance optimization and additional
functionality.

A number of key MDS optimizations and enhance-
ments are planned: the hashing of individual directories,
MDS failure recovery, and a distributedanchorsubsys-
tem used for facilitating multiple hard links and snapshots.
Although most of the more challenging design problems
have been solved, a number of the remaining systems and
protocols will involve substantial effort, particularly the
distributed journaling and failure recovery processes, and
related correctness proofs.

The MDS load balancer currently employed is rela-
tively simplistic, taking only a single performance and re-
source metric into consideration. Simulations [38] sug-
gest that a number of resources may limit MDS perfor-
mance, and that all of them should potentially be consid-
ered. The load balancer should further be robust to a wide
variety of metadata workloads, a prospect that suggests
the importance of additional intelligence. The application
of machine learning algorithms to the variety of replica-

11



tion and load distribution parameters is an exciting area
for potential further research.

A number of Ceph protocol revisions are planned as
well, most notably surrounding the possibility of end-to-
end metadata consistency at the application (POSIX) level
through the use of short-term leases on inode and name
space metadata. Lazy management of file access capa-
bilities and leases on path to inode mappings will further
allow successiveopen andclose operations to proceed
local to clients without MDS interaction, while streamlin-
ing buffer cache consistency issues—a potential boon for
client performance.

Additional research in alternative object file systems
for the OSDs, storage system quality of service, acollec-
tion interface that allows named groups of objects to man-
aged by each OSD, and improved replication and recovery
management are also in progress. Finally, recent research
has described abstract models for common large-scale dis-
tributed processing applications like MapReduce [8] that
involve distributed data processing, structured communi-
cation, and storage. These types of operations are com-
mon to data mining, search engine, and other applica-
tions. The OSD intelligent disk model and Ceph’s data
distribution and distributed replication and recovery pro-
cesses make it an ideal platform for implementing a gener-
alized distributed data processing architecture (for which
MapReduce might be but one application).

6 Conclusions

Object-based storage promises scalability and high
performance by distributing low-level allocation and
scheduling operations to the storage devices, enabling a
tremendous amount of data parallelism in the storage sub-
system. However, the basic model and the scale of the
storage systems it enables present many significant chal-
lenges including managing the metadata, storing the data
efficiently on each OSD, distributing the data effectively,
scaling the storage system dynamically, and managing the
frequent disk failures that are expected in a multi-petabyte
storage system.

The Ceph object-based storage system addresses these
challenges, providing robust, high-performance, flexi-
ble, scalable storage. Ceph’s metadata management ad-
dresses one of the most vexing problems in highly scal-
able storage—how to efficiently provide a single uniform
directory hierarchy obeying POSIX directory semantics
with performance that scales linearly with the number
of metadata servers. Dynamic Subtree Partitioning is a
uniquely scalable approach, offering both efficiency and
the ability to adapt to varying workloads.

Ceph’s data distribution algorithm, RUSH, addresses
another key challenge—how to assign data to nodes such
that it can be rapidly located, workloads are evenly bal-
anced, and minimal data movement is required as object
stores are added to or removed from the system. The
RUSH family of algorithms achieve these goals with a fast
iterative process that distributes data according to a hash
function, but does not require the massive data movement
that standard rehashing would require upon the addition
or removal of storage devices.

Objects can be considered files, and stored using a
general-purpose file system such as ext2/3 or XFS. How-
ever, our results demonstrate that by targeting the spe-
cific needs of objects (as opposed to files), the OBFS ob-
ject file system provides excellent low-level object stor-
age performance tailored to object workloads present in
the Ceph file system. OBFS provides efficient storage
and high performance through a region-based architec-
ture supporting multiple block sizes. Small blocks allo-
cated with extents provide efficient performance for small
objects, while large blocks equal to the system stripe unit
size provide extremely high performance for large objects.

Our results demonstrate Ceph’s performance and scal-
ability and hint at the tremendous potential inherent in
the object-based storage model. Now that the basic Ceph
infrastructure is complete, our future work will focus
on characterizing the bottlenecks that arise in distributed
object-based storage systems and optimizing Ceph’s per-
formance, as well as developing new avenues of research
that are enabled by Ceph’s highly distributed architecture.
Although not quite ready for public distribution, a goal
of the Ceph project is to release the code to the public
domain where it can serve as a reference implementation
that others can use for their own research, to experiment
with, build upon, and compare against2.

Acknowledgments
We would like to thank the faculty and students of the
Storage Systems Research Center for their help and guid-
ance. This research was sponsored in part by Lawrence
Livermore National Laboratory, Los Alamos National
Laboratory, and Sandia National Laboratory under con-
tract B520714. Additional support was provided by SSRC
industrial sponsors.

References
[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-

mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment.

2Our specific goal is to release the code before FAST

12



In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Boston, MA,
Dec. 2002. USENIX.

[2] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor,
N. Rinetzky, O. Rodeh, J. Satran, A. Tavory, and
L. Yerushalmi. Towards an object store. InProceedings of
the 20th IEEE / 11th NASA Goddard Conference on Mass
Storage Systems and Technologies, pages 165–176, Apr.
2003.

[3] P. J. Braam. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster File
Systems, Inc., Aug. 2004.

[4] S. A. Brandt, L. Xue, E. L. Miller, and D. D. E. Long. Ef-
ficient metadata management in large distributed file sys-
tems. InProceedings of the 20th IEEE / 11th NASA God-
dard Conference on Mass Storage Systems and Technolo-
gies, pages 290–298, Apr. 2003.

[5] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed
disk striping to provide high I/O data rates.Computing
Systems, 4(4):405–436, 1991.

[6] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.
PVFS: a parallel file system for Linux clusters. InPro-
ceedings of the 4th Annual Linux Showcase and Confer-
ence, pages 317–327, Atlanta, GA, Oct. 2000.

[7] P. F. Corbett and D. G. Feitelson. The Vesta parallel
file system. ACM Transactions on Computer Systems,
14(3):225–264, 1996.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. InProceedings of the 6th
Symposium on Operating Systems Design and Implemen-
tation (OSDI), San Francisco, CA, Dec. 2004.

[9] G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit groupings: Exploiting disk bandwidth for small
files. In Proceedings of the 1997 USENIX Annual Tech-
nical Conference, pages 1–17. USENIX Association, Jan.
1997.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. InProceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP ’03), Bolton
Landing, NY, Oct. 2003. ACM.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth storage
architecture. InProceedings of the 8th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 92–103,
San Jose, CA, Oct. 1998.

[12] G. A. Gibson and R. Van Meter. Network attached storage
architecture.Communications of the ACM, 43(11):37–45,
2000.

[13] D. Hildebrand and P. Honeyman. Exporting storage sys-
tems in a scalable manner with pNFS. Technical Report
CITI-05-1, CITI, University of Michigan, Feb. 2005.

[14] R. J. Honicky and E. L. Miller. A fast algorithm for online
placement and reorganization of replicated data. InPro-
ceedings of the 17th International Parallel & Distributed
Processing Symposium (IPDPS 2003), Nice, France, Apr.
2003.

[15] R. J. Honicky and E. L. Miller. Replication under scal-
able hashing: A family of algorithms for scalable decen-
tralized data distribution. InProceedings of the 18th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[16] A. Hospodor and E. L. Miller. Interconnection archi-
tectures for petabyte-scale high-performance storage sys-
tems. InProceedings of the 21st IEEE / 12th NASA God-
dard Conference on Mass Storage Systems and Technolo-
gies, pages 273–281, College Park, MD, Apr. 2004.

[17] IBM Corporation. IceCube – a system ar-
chitecture for storage and Internet servers.
http://www.almaden.ibm.com/StorageSystems/
autonomicstorage/CIBHardware/.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture
for global-scale persistent storage. InProceedings of the
9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Cambridge, MA, Nov. 2000. ACM.

[19] R. Latham, N. Miller, R. Ross, and P. Carns. A next-
generation parallel file system for Linux clusters.Linux-
World, pages 56–59, Jan. 2004.

[20] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX.ACM Transactions on Com-
puter Systems, 2(3):181–197, Aug. 1984.

[21] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based
storage. IEEE Communications Magazine, 41(8), Aug.
2003.

[22] E. L. Miller and R. H. Katz. RAMA: An easy-to-use,
high-performance parallel file system.Parallel Comput-
ing, 23(4):419–446, 1997.

[23] N. Nieuwejaar and D. Kotz. The Galley parallel file sys-
tem. InProceedings of 10th ACM International Confer-
ence on Supercomputing, pages 374–381, Philadelphia,
PA, 1996. ACM Press.

[24] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and
M. Best. File-access characteristics of parallel scientific
workloads.IEEE Transactions on Parallel and Distributed
Systems, 7(10):1075–1089, Oct. 1996.

[25] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, , D. Noveck, D. Robinson, and R. Thurlow. The
NFS version 4 protocol. InProceedings of the 2nd Inter-
national System Administration and Networking Confer-
ence (SANE 2000), Maastricht, Netherlands, May 2000.

[26] O. Rodeh and A. Teperman. zFS—a scalable distributed
file system using object disks. InProceedings of the 20th
IEEE / 11th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 207–218, Apr. 2003.

[27] D. Roselli, J. Lorch, and T. Anderson. A comparison
of file system workloads. InProceedings of the 2000
USENIX Annual Technical Conference, pages 41–54, San
Diego, CA, June 2000. USENIX Association.

[28] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. FAB: Building distributed enterprise disk ar-
rays from commodity components. InProceedings of the

13



11th International Conference on Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS), pages 48–58, 2004.

[29] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. InProceedings of
the 2002 Conference on File and Storage Technologies
(FAST), pages 231–244. USENIX, Jan. 2002.

[30] P. Schwan. Lustre: Building a file system for 1000-node
clusters. InProceedings of the 2003 Linux Symposium,
July 2003.

[31] E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed.
I/O requirements of scientific applications: An evolution-
ary view. In Proceedings of the 5th IEEE International
Symposium on High Performance Distributed Computing
(HPDC), pages 49–59. IEEE, 1996.

[32] S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The Global
File System. InProceedings of the 5th NASA Goddard
Conference on Mass Storage Systems and Technologies,
pages 319–342, College Park, MD, 1996.

[33] M. Szeredi. File System in User Space README.
http://www.stillhq.com/extracted/fuse/README, 2003.

[34] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang,
and L. Chu. A self-organizing storage cluster for par-
allel data-intensive applications. InProceedings of the
2004 ACM/IEEE Conference on Supercomputing (SC
’04), Pittsburgh, PA, Nov. 2004.

[35] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long.
OBFS: A file system for object-based storage devices. In
Proceedings of the 21st IEEE / 12th NASA Goddard Con-
ference on Mass Storage Systems and Technologies, pages
283–300, College Park, MD, Apr. 2004. IEEE.

[36] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
D. D. E. Long, and T. T. McLarty. File system workload
analysis for large scale scientific computing applications.
In Proceedings of the 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies,
pages 139–152, College Park, MD, Apr. 2004.

[37] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. InProceedings of
the First International Workshop on Peer-to-Peer Systems
(IPTPS 2002), Cambridge, Massachusetts, Mar. 2002.

[38] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file
systems. InProceedings of the 2004 ACM/IEEE Confer-
ence on Supercomputing (SC ’04), Pittsburgh, PA, Nov.
2004. ACM.

[39] B. Welch and G. Gibson. Managing scalability in object
storage systems for HPC Linux clusters. InProceedings of
the 21st IEEE / 12th NASA Goddard Conference on Mass
Storage Systems and Technologies, pages 433–445, Apr.
2004.

[40] B. S. White, M. Walker, M. Humphrey, and A. S.
Grimshaw. LegionFS: A secure and scalable file system
supporting cross-domain high-performance applications.
In Proceedings of the 2001 ACM/IEEE Conference on Su-
percomputing (SC ’01), Denver, CO, 2001.

[41] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E. Long, S. A.
Brandt, and W. Litwin. Reliability mechanisms for very
large storage systems. InProceedings of the 20th IEEE /
11th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 146–156, Apr. 2003.

[42] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evaluation
of distributed recovery in large-scale storage systems. In
Proceedings of the 13th IEEE International Symposium on
High Performance Distributed Computing (HPDC), pages
172–181, Honolulu, HI, June 2004.

[43] Q. Xin, E. L. Miller, T. J. E. Schwarz, and D. D. E.
Long. Impact of failure on interconnection networks in
large storage systems. InProceedings of the 22nd IEEE /
13th NASA Goddard Conference on Mass Storage Systems
and Technologies, Monterey, CA, Apr. 2005.

14


	ssrctrcover-06-01
	ceph

