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Abstract Object-based storage [21] promises to address these

Iina'tations through a simple networked data storage unit,

general-purpose computing environments are generZﬁe Object Storage Device (OSD). Each OSD consists of
a ¥:PU, network interface, local cache, and storage device

best served by distributed storage systems. Traditioral %?lsk or small RAID configuration), and exports a high-

lslf[g(r)gs’e esxir:;?::flr?]%g)e/leFi, f;?:gf rﬁ;’:{ng:g ?jlestnngzgelegg data object abstraction on top of the disk (or RAID)
ge sy ' DI8ck read/write interface. By managing low-level stor-

high-performance computing environments where a sin- : . : .
gnh-p puting ape details such as allocation and disk request scheduling

gle server may become a bottleneck, nor do they SC%cally, OSDs provide a building-block for scalability.

well due to the need to manually partition (or repar- c Iv. obiect-based i
tition) the data among the servers. Object-based stor- onceptually, 0 J_eCt' ased storage provides an atrac-
model for distributed storage. However, there are

age promises to address these needs through a sifli¥fe ) X
networked data storage unit, the Object Storage Dev any |sfsues lt,h‘glt need Itoblbe ﬁ,d‘:]ressfd in the d%\_/elop-
(OSD) that manages all local storage issues and exp@Ht of a reliable, scalable, high-performance object-

a simple read/write data interface. Despite this sifaSed storage system. These include metadata manage-

ple concept, many challenges remain, including efficiefENt Object management, data distribution, reliabilty,
object storage, centralized metadata management, &ﬂg replication, among others. o )

and metadata replication, and data and metadata reliabil'Vé Present Ceph, a prototype distributed object-based
ity. We describe Ceph, a distributed object-based st§iorage system that meets these challenges, providing
age system that meets these challenges, providing higgh-performance file storage that scales linearly _W|th
performance file storage that scales directly with the nufi€ number of OSDs and Metadata servers. Designed

ber of OSDs and Metadata servers. for multi-petabyte general-purpose and high-performance
scientific installations with aggregate throughput of up to

1 TB/s to and from tens of thousands of clients, Ceph pro-
vides a robust and effective metadata management archi-
For performance and capacity reasons, the data steeture, an efficient object file system, an effective data
age needs of large high-performance and general-purpdis¢ribution mechanism to assign file data to objects, a ro-
computing environments are best served by distributedst reliability mechanism to deal with the frequent fail-
storage systems. Traditional solutions, exemplified byes that can be expected in peta-scale file systems, and
NFS [25], provide a straightforward distributed storagbe ability to scale the system dynamically as new OSDs
model in which each server exports a file system hierand metadata servers are added.

chy that can be mounted and mapping into the local fileThe Ceph storage system architecture is based upon a
system name space. While widely used and highly effemllection of OSDs connected by high-speed networks. A
tive, this model was originally designed for small, lowkey advantage of OSDs is the ability to delegate low-level
performance (by modern standards) storage systems biogk allocation and synchronization for a given segment
is relatively inflexible, difficult to grow dynamically, andof data to the device on which it is stored, leaving the file
incapable of providing performance that scales with tlsgstem to choose only which OSD a given segment should
number of servers in a system (except in particularly fdve placed. Since this decision is simple and distributable,
tuitous circumstances). each OSD need only manage concurrency locally, allow-

The data storage needs of large high-performance

1 Introduction



ing a file system built from thousands of OSDs to achieject storage devices (OSDs) that store data and metadata,
massively parallel data transfers. a client interface, and a high-speed communications net-

Ceph’s clustered metadata management architectuverk.

Dynamic Subtree Partitioning [38], provides high perfor-

mance, scalability, and reliability. It dynamically redel 2.1 Metadata Management

gates and, as needed, replicates responsibility for setidetadata operations make up as much as 50% of typical
of the metadata hierarchy among the metadata senfégssystem workloads [27], making the MDS cluster crit-
(MDSs) in the cluster to balance the workload, manaifi@l to overall system performance. Ceph utilizes a dy-
hot spots, and allow for automatic scaling when new mef2@mic metadata management infrastructure based on Dy-
data servers are added. namic Subtree Partitioning [38] to facilitate efficient and

Running on each OSD, our object-based file systemsgalable load distribution across dozens of MDS nodes.
based upon a flat object name space, employing a clbihough metadata (like data) is ultimately stored on disk
ter of metadata servers to translate human-readable naféscluster of OSDs, the MDS cluster maintains a large
into a file identifier and, ultimately, object identifiers. Adistributed in-memory cache to maximize performance.
special-purpose object file system, OBFS [35], provideé€ph uses a primary-copy replication approach to man-
high-performance object storage for OSDs with relativeBge this distributed cache, while a two-tiered storagé-stra
little code, taking advantage of the flat name space, %Y optimizes 1/O and facilitates efficient on-disk layout.
of directories, and lack of inter-object locality to manag® flexible load partitioning infrastructure uses efficient
objects much more efficiently than is possible with typicgHbtree-based distribution in most cases, while allowing
file systems. hashed distribution to cope with individual hot spots.

Any large file system requires the ability to add storage The primary-copy caching strategy makes a single au-
in the form of new OSDs (or remove old ones). To alloforitative node responsible for managing cache coher-
storage scalability without sacrificing parallelism, Cep@hnce and serializing and committing updates for any given
utilizes RUSH [14, 15], a family of algorithms that allopiece of metadata. While most existing distributed file
cate objects to OSDs. RUSH allows for fast and randoistems employ some form of static subtree-based parti-
allocation of objects (for load balancing) but, unlike sinfioning to delegate this authority, some recent and experi-
ple hashing, allows new OSDs to be added to (or removagntal file systems have tried hash functions to distribute
from) the system without the overhead usually requirééfectory and file metadata, effectively sacrificing local-
to rehash and relocate existing objects. RUSH also fi for load distribution. Both approaches have critical
cilitates replication of objects across multiple OSDs fdinitations: static subtree partitioning fails to cope fwit
redundancy. dynamic workloads and data sets, while hashing destroys

The raw number of commodity hard drives require@etadata Ioca_llity and critical opportunities for efficient
to store petabytes of data means that our storage systRe prefetching and storage. _
can be expected to have frequent drive failures. Researck€Ph's metadata server cluster is based on a dynamic
has shown that traditional RAID cannot adequately prBi€tadata management design that allows it to dynami-
tect the system from data loss, even in the short terf@lly and adaptively distribute cached metadata h|e_rarch|
FaRM [41, 42] address this problem, rapidly reconstru&@lly across a set of MDS nodes. Arbitrary and variably-
ing lost disks on an object-by-object basis and providirfzed s_ubtrees of the directory hierarchy can be reassigned
the high reliability required of such systems. and mlgr_ate_d between MDS nodes to keep thg w_orklpad

Developed separately, these components have rioygnly distributed across the cluster. This distribution
proven effective as part of the overall Ceph architectufé, €ntirely adaptive and based on the current workload
We present the design in greater detail, and discuss Hygracteristics. A load balancer monitors the popular-
Ceph, and the object-based storage model in general, I;,%__of meta_data within the directory hierarchy and peri-
vides reliable, scalable, high-performance file system s@fiically shifts subtrees between nodes as needed. The
vices. Our results show that Ceph meets its goals in pfSUlting subtree based partition it kept coarse to mini-

viding high performance, flexibility, and scalability. mize prefix replication overhgad and preserve Iocglity. Ip
the Ceph prototype, the choice of subtrees to migrate is

. based on a set of heuristics designed to minimize parti-
2 System Architecture tion complexity—and the associated replication of prefix
The Ceph architecture contains four key componentsinades—by moving toward a simpler distribution when-
small cluster of metadata servers (MDSs) that manage #éver possible. When necessary, particularly large or pop-
overall file system name space, a large collection of alar directories can then be individually hashed across the



cluster, allowing a wide load distribution for hot spotton that will facilitate future Ceph features like snaptho
only when it is needed—uwithout incurring the associategbplied to arbitrary subtrees of the directory hierarchy.
overhead in the general case. The core of the MDS design is built around a set of

Clients cache information about which MDS nodes ap(j}stributed protocols that manage distributed cache co-

authoritative for which directories in their local metaaiat’€"€Ncy and metadata locking hierarchies, allowing sub-

caches, allowing metadata operations to be directed &S 1 be seemlessly migrated between nodes while en-

ward the MDS node authoritative for the deepest knov'éHring file system consﬁstency W,ith per-MDS journals. In

prefix of a given path. The relatively coarse partitiowe event of an MDS failure, the journal can be resca}nr_]ed
makes it easy for clients to “learn” the metadata partitid POth reconstruct the contents of the failed node’s in-
for parts of the file system they're interested in, resultifemery cache (for quick startup) and (in doing so) re-

in very few misdirected queries. More importantly, thi€OVer the Ceph file system state.

basic strategy allows the MDS cluster to manipulate client )

consensus on the location of popular metadata to dispefse  Object Storage

poteqtial hqt spots and flash crowds (Ii_ke 10,000 cliengsgpg [35] is the storage manager on each OSD—it pro-
opening/ I'i b/ 1'i bc. so). Normally clients learn the \iges object storage and manages local request schedul-
proper locations of unpopular metadata and are ablejdg ajiocation, and caching. Ceph files are striped across
contact the appropriate MDS directly. Clients accessigfiacts to enable a high degree of parallelism, limiting
popular metadata, on the other hand, are told the m&lgiacts to the system stripe unit size and (intentionally)
dgta. re§|des either on different or multiple MDS_nOdeéestroying inter-object locality within a single OSD. De-
distributing the workload across the cluster. This basiyeq writes in the file cache at the client side absorb most
approach allows the MDS to effectively bound the nunap, || writes and result in relatively large synchronous ob-
ber_ of clients bel|e\_/|ng any particular piece of met:’;\dc’;\lf@ct reads and writes to the OSDs (a more detailed analy-
resides on any particular server at all times, thus prevegk of the expected object workload is provided elsewhere
ing potential flash crowds from overloading any partlcuIT@GD_ OBFS exploits these design choices to simply on-
node. disk layout for both performance and reliability.

Although the MDS cluster is able to satisfy most meta- To maximize overall throughput without over-
data requests from its in-memory cache, all metadata gpmmitting resources to small objects, OBFS employs
dates must also be committed to disk for safety. A setiiultiple block sizes and useggions (see Figure 1),
large, bounded, lazily flushed journals allows each MOC#halogous to cylinder groups in FFS [20], to keep blocks
to quickly stream its updated metadata to disk in an effif the same size together. The block size of a region is
cient and distributed manner. The large per-MDS journdg¢termined at the time that a (free) region is initialized,
also serves to absorb repetitive metadata updates (c@rhich occurs when there are insufficient free blocks in
mon to most workloads) such that when dirty metadaaay initialized region to satisfy a write request. When
are later flushed from the journal to long-term storagal] of the blocks in an initialized region are freed, OBFS
far fewer updates are required. This two-tiered stratetgturns the region to the free region list. OBFS uses two
provides the best from both worlds: streaming updatesittock sizes: small (4 KB, the logical block size in Linux),
disk in an efficient (sequential) fashion, and a vastly rand large (1 MB, the system stripe unit size). Overall, this
duced re-write workload allowing the long-term on-diskcheme has many advantages; it minimizes file system
storage layout to be optimized for future read access. ffagmentation, simplifies allocation, avoids unnecessary
particular, inodes are embedded directly within direeteriwasted space and effectively uses the available disk
(not dissimilar to C-FFS’s embedded inodes [9]), allopandwidth. The use of regions also reduces the size of
ing the MDS to exploit locality in its workload to prefetchother file system data structures such as free block lists
metadata. Inode numbers are managed with journaled ap-maps and thus makes the operations on those data
dates and distributed free lists, while an auxiliarychor structures more efficient.
table is used to keep the rare inode with multiple hard Object metadata, stored anodesis used to track the
links globally addressable by inode number—all withostatus of each object. Onodes are preallocated in fixed po-
encumbering the overwhelmingly common case of singlgitions at the head of small block regions, similar to the
linked files with an enormous, sparsely populated amdy inodes are placed in cylinder groups in FFS [20]. In
cumbersome conventional inode table. The anchor taldege block regions, shown in Figure 2, onodes are colo-
maintains the minimum amount of information necessacgted with the data block on the disk, similar to embedded
to locate “anchored” inodes, providing a simple abstraitodes [9]. This allows for very efficient metadata updates
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Figure 2: Region structure and data layout.
Disk the OSD and remains quite small: with 20,000 objects
Boot residing in an OSD, the OLT requires only 233 KB. For
sector | _ Larae efficiency, the OLT is loaded into main memory and up-
Region ;’;je Data blocks and b,ogk dated asynchronously. A Region Head List (RHL) stores
Region 1 head | g onodes region information about each region in the file system, includ-
p g J Yy
. ing pointers to the free block bitmap and the free onode
. bitmap. On an 80 GB disk, the RHL occupies 8 MB of
Region 2 Region | Onode disk space. Like the OLT, the RHL is loaded into mem-
o head | table Smal ory and updated asynchronously. After obtaining an on-
Free Free Data blocks block y . p y y . g
S | biock | onode region ode identifier, OBFS searches the RHL using the upper
: ~ bitmap | bitmap 16 bits of the onode identifier to obtain the corresponding
region type. If the onode belongs to a large block region,
Region n the object data address can be directly calculated. Other-
wise, OBFS searches the in-memory onode cache to find

that onode, loading it from disk if the search fails.
Figure 1: OBFS structure OBFS asynchronously updates important data struc-
tures such as the OLT and the RHL to achieve better per-

as the metadata can be written with the corresponding di@énance. In order to guarantee system reliability, OBFS
block. updates some important information in the onodes syn-

As shown in Figure 2, each onode has a unique 32_Bﬂrofn?husly. Ifthe sys(;em c;ashes, tCr)]BFdS (l:<atn qU|tc):k!|)éstc;]an
identifier consisting of two parts: a 16 bit region ident O (€ regions and onoces on the disk 1o rebu €

fier and a 16 bit in-region object identifier. If a regiorQLT and the RHL. For each object, the object identifier

: ; - : d the region identifier are used to assemble a new entry
occupies 256 MB on disk, this scheme will support OS .
of up to 16 TB, and larger OSD volumes are possible wi the OLT. The block addresses for each object are then

larger regions. To locate a desired object, OBFS first fianed to rebuild each region free block bitmap. Because the
the region using the region identifier and then uses the _odes_ are synchronously updated, we can safely rebuild
region object identifier to index the onode. This is partié-e entire OLT and RHL af.‘d resm* the system. .OBFS

ularly effective for large objects because the object indedates onode metadata either without an exira disk seek

points directly to the onode and the object data, whiéh with one short disk seek (depending on object type). In

are stored contiguously. In the current implementatio?'l0 doing, it keeps the file system reliable and maintains

onodes for both large and small objects are 512 bytes,sa}f-Stem integrity with very little overhead.
lowing OBFS to avoid using indirect blocks entirely: th
maximum size of a small object will always be less th;3 OSD Cluster Management

the stripe unit size, which is 1 MB in our design, ensuringeph’s OSD cluster is used for storing both data and meta-
that block indices will fit inside the onode. data (although the same set of disks need not be respon-

An Object Lookup Tabl€OLT) manages the mappingsible for both). Intelligent OSDs allow data replication,

between object identifiers and onode identifiers. The siadlure detection and recovery activities take place semi-
of the OLT is proportional to the number of objects imutonomously under the supervision of the MDS cluster.



This intelligence in the storage layer allows the OSD clus-
ter to collectively provide a reliable, scalable, and high-
performance object storage service to client and MDS
nodes.
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In Ceph, the contents of each file are striped over a se-
guence of objects stored on OSDs. To ensure that tens
of thousands of clients can access pieces of a single file I e e M R B
spread across thousands of object-based disks, Ceph must 0123456738 09101112131415

use a distribution mechanism free of central bottlenecks. Disk number

This mechanism must accommodate replication, allow f&®) Data distribution across a system with 16 nodes. Thesyst
the storage system to be easily expanded, and presé’l”\?é built mcr_ementally, starting with 8 d_|sks, adding 4 mor
load balance in the face of added capacity or drive faift"d then adding 4 more for a total of 16 disks.

o

ures. We chose the RUgHvariant of the RUSH [15] 1.2 T

algorithm to distribute data because it meets all of these ‘o O O O

goals. g = Al ] BRRREEN
The RUSH algorithm first maps éileld, offse} pair & 0.8 _

into one of a large number (1Pof redundancy groups é 06 - [

A redundancy group is a collection of data blocks (ob- 2

jects) and their associated replicas or parity blocks. &her & 047

are several ways to use the redundancy groups, includ-S 0.2
ing mirroring, parity, and more advanced erasure cod-

ing schemes, with the trade-offs between the different re- 5 ‘2 4‘1 é é 1‘0 1‘2 1‘4 1‘6 1‘8 2‘0 2‘2 2‘4 2‘6 2‘8 3‘0
dundancy mechanisms lying in the complexity of parity Disk number

management and recovery operations, the bandwidth c@py pata distribution across a cluster of 32 nodes with ordgeno
sumed by recovery [37], and the storage efficiency. RUSHiled. This system was built from the system in the graptvabo
performs a second mapping that identifies all of the OSIbg adding 16 disks all at once, and declaring disk 20 as failed
on which a redundancy group is stored, with the guaran- Figure 3: Data distribution balance using RUSH.

tee that no OSD will appear twice in the list. Since Ceph

currently uses replication, it stores theeplicas of the By generating a list with more replicas than absolutely
objects in the redundancy group on the firgiperational required, Ceph can handle OSD failures by making an ad-
OSDs in the list. The only other input into this mapping igitional replica of each affected group on the next OSD
a list of (numDisksweight tuples describing each clusin the list. Since each redundancy group on an OSD has
ter of OSDs that has been added to the system, whardistinct list, it is likely that an OSD failure will result
numDisksis the size of the cluster added angightis in the new replicas for the groups being placed on differ-
a weight for the new disks relative to other disks in thent OSDs, increasing reconstruction speed and decreas-
system. Theweight parameter can be used to bias thiag the likelihood that a second failure will occur before
distribution of objects to OSDs, as would be necessahge system has restored the necessary level of replica-
if, for example, newer disks had a higher capacity thdion. The RUSH algorithm probabilistically guarantees
older disks. The mapping process is very fast, requiritigat data will be distributed evenly (modulo weighting)
less than Jus per cluster to compute; for a system thaicross all of the OSDs, regardless of the number of clus-
had 100 clusters added, this mapping would take less thers added to the system or the number of individual OSDs
100us. Ceph additionally must keep a list of failed OSDihat have failed, as shown in Figure 3.

so it can skip over them when selecting OSDs from the L

list generated by the RUSH mapping. These lists charfga:2 Replication

slowly—on the order of a few times per day at most-Object replication is managed in terms of the redun-
and are small, allowing them to be cached cached at edelmcy groups (a collection of objects, as described in Sec-
client. Most importantly, clients are able to quickly logattion 2.3.1) and the associated list of OSDs. In the Ceph
file data based only on fileld (inode number) and file prototype, these OSDs are used to store whole object
offset, without consulting a central metadata server.  replicas forn-way replication; parity and erasure coding




schemes are also possible, but not implemented. Withiuinication problems detected. Overlapping monitoring
each redundancy group, the first OSD is responsible fpoups are assigned by a pseudo-random hash function,
storing the primary copy of an object and managing reptitich that each OSD monitonsother OSDs and is con-
cation, while the following one or more OSDs store replirersely monitored by peers. We use the RUSH function
cas. Each OSD will participate in many thousands of rar peer set assignment, although not all of its properties
dundancy groups made up of a different (and seemly rame required. Liveness information piggybacks on exist-
dom) sets of OSDs, and will act in a different role (pring inter-OSD (replication) chatter or explicit “ping” mes
mary or replica) for each. sages when necessary. The MDS cluster collects failure

All object read and write operations are directed to theports and verifies failures to filter out transient or sys-
redundancy group’s primary OSD, which is ultimately reemic problems (like a network partition) centrally. This
sponsible for ensuring an object’s reliable storage (batbmbination of distributed detection and a centralized co-
locally and on the replica OSDs). Read operations cardinator in Ceph takes the best from both worlds: it al-
be satisfied locally either from the OSDs buffer cache tmws fast detection without unduly burdening the MDS
by reading from the local disk. (Although it is tempteluster, and resolves the occurrence of inconsistency with
ing to balance read traffic across an object’s replicas, thie arbitrament of the MDS cluster.
only complicates replication without benefit; RUSH al- Non-responsive OSDs are initially markeddmwvnto
ready distributes load evenly across OSDs.) indicate a potentially transient failure. During this eti

In the case of object writes and updates, the primahe next replica in each redundancy group works as the
OSD forwards the request on to the replica(s) before coatting primaryby completing write requests locally. If
mitting the changes locally, and does not acknowledge the primary OSD recovers, a log is used to resynchronize
operation until the update is safely stored both on the locatiundancy group content. If the OSD does not recover
disk and in the buffer cache on the replica OSD(s). Thaster some interval, it is marked dailed and recovery
approach allows the latency of replication to be maskednitiated, at which point the acting primary becomes the
by that of the local disk write, while freeing the OShew primary and the objects in each redundancy group are
user from dealing with any replication-related activitieeplicated to the next replica in line. OSD state changes
(and related consistency considerations). It is alsoylikedre distributed to active clients and OSDs via an epidemic-
that the internal OSD network bandwidth will be greatestyle broadcast (piggybacking on existing messages when
than the external bandwidth in typical installations, makossible). Clients attempting to access a newly failed disk
ing this a desirable (and often ideal) network data pagimply time out and retry OSD operations until a new
The primary OSD is then responsible for maintaining ceBSD statusdownor failed) is learned, at which point re-
tain local state to ensure that updated objects are sulzpgests are redirected toward the new or acting primaries.
guently committed to disk on replicas. Ceph’'s RUSH-based data distribution algorithm uti-

This choice of when to acknowledge a write as “safdéizes FaRM [41, 42], a distributed approach to fast fail-
is based on consideration of the most common failure scee recovery. Because replicas for the objects stored on
narios. If the primary OSD fails, the write isn’t acknowlany individual OSD are declustered across a large set of
edged, and the user can retry. If the replica fails, the predundancy groups and thus OSDs, failure recovery can
mary will re-copy affected objects to a new replica duringroceed in a parallel and distributed manner as the set
the recovery process based on its receipt of an “in buffé@@SDs with replicas copy objects to a new (similarly dis-
but no “on disk” acknowledgment. And in a correlatettibuted) set of OSDs. This approach eliminates the disk
failure (like a power outage), the data is either never dcebuild” bottleneck typical of traditional RAID systems
knowledged or safely on disk on the primary OSD. (in which recovery in limited by a single disk’s write
bandwidth), thus greatly speeding the recovery process
and minimizing the window of opportunity for a subse-
OSD failure detection in Ceph is fully distributed, whilgjuent failure to cause data loss. Prior research has shown
being centrally managed by the MDS cluster. Althoughat FaRM'’s fast recovery can reduce a large storage sys-
failure modes that do not include network disconnegam’s probability of data loss by multiple orders of mag-
tion (like local file system or media defects) involve selfitude.
reporting by OSDs to the MDS cluster, communication .
failure detection requires active monitoring and by neces3-4 Scalability
sity a distributed approach in a cluster of 10,000 or mofdie Ceph prototype stripes file data across 1 MB objects,
OSDs. Each OSD in Ceph is responsible for monitoringsaattered across different OSDs. In contrast to object-
small set of its peers, and notifying an MDS of any conbased storage systems like Lustre [3, 30] that stripe data

2.3.3 Failure Detection and Recovery



over a small set of very large objects, Ceph instead rel@milar to that of NFS: inode information in the cache re-
on a large set of medium-sized and well distributed obyains valid for a fixed period (we use 10 seconds) be-
jects. This approach simultaneously allows massive Ifére subsequerdt at operations require contacting the
parallelism to both individual large files, whose contenDS cluster. The client reads from and writes to files by
may be spread across the entire OSD cluster, and large setamunicating with OSDs directly: once opened, the in-
of smaller files. We believe the 1 MB object size providesle number and byte offset specify (via RUSH) an object
a good tradeoff between seek latency and read or wiidlentifier and OSD to interact with. A buffer cache serves
time in individual OSD workloads—which exhibit little to filter out redundant file 1/O while maximizing the size
or no locality in a large system—while scaling in termsf file requests submitted to OSDs.
of both aggregate and single file performance. The CepiBuffer cache coherence among clients is controlled by
architecture accommodates arbitrary striping stratezggeshe MDS cluster by sending capability updates to clients
well, including arbitrary stripe widths, stripe set sizasd with open files. These updates can cause the client to
objects sizes. This flexibility allows one to trade singleither flush all dirty buffers or invalidate all buffers of a
file parallel throughput for the preservation of some locgbarticular file. In addition to MDS-initiated buffer cache
ity in OSD workloads and small gains in OSD efficiencffushes the client cleans buffers which have been dirty for
under streaming applications. longer than a fixed time period (we use 30 seconds).

The RUSH data distribution allows Ceph storage to
scale by providing a balanced, random data distributig®® Network

that facilitates OSD cluster expansion with minimal datghe Ceph prototype currently uses a single gigabit Ether-
relocation. By defining the mapping process recursivefyet switch for its network; the relatively small scale of the
RUSH results in the approximate minimal amount of dagystem makes this feasible. This approach limits band-
movement that is required in order to restore balance\{@iith to a single node to about 80-100 MB/s. Because
disk capacities after new (empty) OSDs are added. TRigrrent disks cannot transfer data faster than this rate, gi
allows the overall storage capacity to be expanded (@bit bandwidth is sufficient. Future OSDs will likely re-
reduced) in an optimal fashion: data movement is mirjuire faster networks, such as 10-gigabit Ethernet or other
mized while data distribution is preserved. networking technologies.

More specifically, OSD cluster expansion results in A more important concern for larger OSD systems is
the relocation of some set of redundancy groups to néewat a single monolithic switch will no longer be feasible
OSDs. When each OSD learns of a cluster expansigfhce a large OSD system may have thousands of nodes
it iterates over the set of redundancy groups for whichdhd require hundreds of gigabytes or terabytes per second
is newly responsible (a non-trivial but reasonable corsf total bandwidth. This network must also be reliable
putation) to determine which objects it need to migraig the face of a small number of link and switch failures.
from the old primaries. During the migration procesghe two basic approaches to such a network would be the
read requests for any object not yet migrated are proxigshstruction of a multi-layer switching network or a net-
to the old primary. Updates are committed locally, alongork in which each OSD has its own network switch. The
with additional state to track which parts of the not-yetatter approach may be more scalable, and resembles the

migrated object are new. decades-old problem of building massively parallel com-
puters using relatively slow networks. The details of how
2.4 Client Interface to build a large-scale interconnection network for an OSD

. . t b d th f thi , but oth -
The Ceph client combines a local metadata cache, a bugézrirr? ha;: cc?ri/soigeredetr?g?spseu(e) [1és4%aliper utomerre
cache, and a POSIX call interface. Our prototype imple- T

mentation is in userspace, allowing an application to &j-

ther link to it directly (as with our synthetic workloads an? Performance

trace replays), or for a Ceph file system to be mounted ¥ye evaluate the performance of the Ceph prototype by ex-

rectly on a Linux system via a thin FUSE (user space fi@nining both the performance of individual subsystems

system [33]) glue module. under pathological workloads, and by measuring perfor-
The client communicates with the MDS cluster to opdRance of the entire system under more typical load.

and close files and manipulate the file name space, while

maintaining a local metadata cache both for efficien Metadata Server

purposes and to “learn” the current partition of metadafée evaluated the scalability of the MDS cluster with a se-

across the MDS cluster. Metadata consistency is currentls of performance tests that scale the size of the OSD



cess to the sharelusr/|i b compromises only ap-
* * + proximately 30% of the trace, versus about 65% for
openssh+i ncl ude. The strangely poor performance
¢ makedirs of the 16-node MDS cluster undepenssh+l i b (the
. e e EITatic dip in Figure 4) is caused by “thrashing” in the
... load balancer, due to a subtle interaction between the bal-
ancing heuristics and the workload that causes metadata to
"B, D€ MOVEd unnecessarily between MDS nodes. Although
v -9 tuning balancer parameters should resolve the issue, it's
inclusion here highlights the importance of better intelli
0 ‘ \ \ \ ‘ ‘ gence in the load balancing algorithm—intelligence that
0 10 20 MD?>SOn0d6840 50 60 is completely lacking (by design) in conventional static
subtree partitioning strategies.
In both traces scaling is limited by the separability of

Figure 4 Relative MDS performance as cluster siAhe workload, specifically in terms of the replication and

scales under three workloads. Heavily shared directoffigiribution of popular metadata (the shared directories)
limit load distribution. and the load distribution of the independent (per-client)

localized workload components. Although the shared

cluster and workload in unison with the MDS cluster sizg0t spot” directories were replicated across all nodes,
In all cases we use twice as many OSDs as MDS nodiég open and close operations are currently directed to-
for metadata storage. An additional set of nodes (one §é¥d the primary inode copy residing on a single node;
MDS) is used to generate a synthetic workload, each néd@10ugh the metadata architecture is designed to allow
running 50 independent instances of the client and assdflividual directories to be hashed (thus distributing the
ated workload generator. contents of hot directories), Ceph does not yet fully imple-

Themakedi r s workload creates a huge tree of nestdg€nt this feature. The irregularity in tienssh+l i b
directories and files1 (4) levels deep, each director);race also indicates the importance of a load balancer that

containingm (25) children. Theopenssh-+l i b work- is robust to a wide variety of workloads. The current bal-
load replays a trace of a compile of openssh with t@cer used by Ceph does reasonably well with most work-
Jusr/1ib directory shared with other clients whildoads, butis still relatively primitive and can thrash imce
openssh+i ncl ude shares usr/i ncl ude instead. tain.pathological casege(.a walk of t_he directory_tree).
Both traces include extracting the source tree, doing the-igure 5 shows the latency experienced by clients asa
compile, and then removing everything before repeatirfjnode load balanced MDS cluster approaches saturation
In all three tests MDS performance is CPU-bound; knder themakedi rs (exclusively write) workload. The
practice MDS performance will additionally be limited byMDS cluster is synchronously journaling metadata update
memory cache size and the resulting 1/O rates from cad@R€rations and committing a stream of recently created
misses, making MDS performance further dependent 8iectories to long-term storage. Typical latency experi-
that of the OSD cluster. enced by clients in our prototype is on the order of 1-2ms

Figure 4 shows the MDS cluster scaling from 1 up lf&r metadata read operations and 3-4 ms for write opera-
64 nodes under the three workloads. THmkedirs tions, where the difference is due to an additional network

workload is trivially separable under the dynamic subtregeund trip (to the OSD) and synchronous disk W”te' This
based metadata partitioning scheme, resulting in alm@t ncy penalty’ for updates can of course be a_vmded by
perfectly linear scalin The compilations show a re-disabling Ceph's synchronous metadata journaling (at the
duction in individual MDS throughput for large clustefFXPense of NFS-like safety semantics) or using NVRAM
sizes due to heavy traffic in shared directories. In bo?f the MDS to mask the write latency.

tests usr/1ibor/usr/includeisreplicated to dis- ) )
tribute read access, but file opens are still directed 2 Fileand Object Storage

ward the primary copy residing on a single node. Trﬁ)r compatibility and comparison purposes we imple-
openssh+l i b workload fares much better because Affiented a simple object storage module that would func-

1The small divergence from perfectly linear in tmekedi r s work- tIO.n on top of any eX|st|ng kernel file system. .The ﬂ"."t
load is in fact most likely due to lock contention in the megisg sub- OPJ€Ct name space was implemented by hashing object

system. names over a set of directories to avoid directory size
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Figure 5: Metadata latency versus throughput curve asrigyre 6: OBFS write performance on a single node
the cluster approaches saturation.
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and lookup performance limitations present in popular file
systems like ext3. We then compared performance of the 40 -
OSDs in Ceph using both ext2/3 and the special-purpo?

OBFS. < 30 4
3
Ny
321 ext3 g’ 20 ~
= [
For Ceph metadata 1/0 bound workloads (such as creaé- 10 s, X

only workloads reliant on efficient MDS journaling), we
found (not unsurprisingly) that synchronous OSD write 0 ‘ ‘ ‘ ‘
performance was critical to metadata throughput. In par- 8 12 16 20 24
ticular, the use of sync() orfdatasync() on ext2 Number of Clients

(no journaling) restricted streaming performance when

making small synchronous writes to a small number of ) )

objects. We avoided this limitation by striping metadatdgure 7: Large file write throughput per OSD as the
updates over a large set of (16) objects with a very smaHmber of clients scales

(256-byt§)_stripe size. This improved performance even3 | arge File Performance

when striping over a small set of (4) OSDs, suggestin

strange synchronous write behavior in ext2 and und
scoring the importance of an OSD file system prope
tuned for Ceph workloads.

[reaming 1/Os, most common in multi-media and sci-
Wtific environments, can easily pass through the client
buffer cache and stress the back end storage. We evalu-
ated the streaming I/O performance by sequentially read-
322 OBES ing and writing several very large files across a 6-node

OSD cluster. A single MDS was used, while a variable
We evaluated OBFS performance on an individual OSBymber of client nodes were used to generate workload.
as shown in Figure 6, relative to Linux XFS and ext3. Weach client process simply opened a very large file and se-
used a synthetic workload composed of 80% of 512 Kdgientially wrote to or read from it. The I/O request sizes
large objects, and 20% small objects, with small objecaried from 16 KB to 1 MB for each run. We compare
sizes uniformly distributed between 1 KB and 512 KBhe performance of OBFS and ext2 as the underlying file
Disk aging effects were simulated by introducing a larggstem used for each OSD. We used ext2 over ext3 (de-
number of write/delete operations, which always maispite its poor consistency properties) because it perfdrme
tained the disk usage around 60%. As we can see froetter.
the figure, OBFS provides sustained throughput around-igure 7 shows the average per-OSD write throughput
20 MB/sec, which improves the performance by a factas the number of clients scales. With an I/O request size
of 40% over XFS, and double that of ext3. of 16 KB, 8 client nodes can easily saturate the 6-node
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Figure8: Large file write throughput per OSD as requestigure 9: Throughput per OSD with small 4 KB requests
size varies as client load varies

OSD cluster using the ext2 file system. The average OSD 600 -

throughput is around 8 MB/sec, which yields 48 MB/secz 500 . 128 clients
overall throughput. The OSD cluster with OBFS show%

much better performance, saturating only after more th&ap 400 - 96 clents
20 client nodes were used. The average OSD throug%— |

put is more than 20 MB/sec, for a combined through£ 64 clents

put of up to 120 MB/sec for this small cluster. Using8 200
large 1/0O request sizes significantly improves OSD effiig 100 4
ciency: the OSD cluster with ext2 achieves an average
of 20 MB/sec throughput per OSD. OBFS demonstrates 0
extremely good performance under the same workload,
servicing 24 client nodes before saturating with an aver-
age per-OSD throughput of 44 MB/sec, almost 80% of the

raw.d|sk performance. . Figure 10: Compile trace completion time versus
Figure 8 shows the average OSD write performancel"f’)goughputunder varying client levels

the 1/0 request size changes. Small I/O sizes incur many
more object metadata operations on each OSD and d&s Qverall Performance

stroy the sequentiality of the original streams. By usin_lg i
larger request sizes, the average OSD throughput can' B&Valuate the overall performance of the Ceph file sys-

improved by a factor of two, underscoring the importand@m We look at a 4 MDS, 16 OSD storage cluster with a
of the client buffer cache. workload consisting of multiple clients simulating a com-

pile of openssh. Each client replays a file access trace gen-
erated from an actual compilation (including both meta-
3.4 Small File Performance data and data operations) in a private directory. Figure 10
shows average client completion times on ytexis as a
We evaluated the pe_rformance Qf the OSD gluster Wmnction of system throughput (measured in the number
random reads and writes: small files, and all file requests etadata operations on thexis). System throughput
less than 4k (as would be seen without a client bUﬁﬁf this case is limited by OSD I/O (hot surprising given

caphe). T.he workload consisted of 20% reads and 8%/% large MDS to OSD ratio) as a hundred clients hammer
writes. Figure 9 shows the per-OSD throughput N iy 16 disks.

cluster 16 OSDs as the number of client load generators
varies. Performance under this extreme workload is mugh
lower (just over 1 MB/sec), again emphasizing the iméE Related Work

portance of the client buffer cache for coalescing smaligh-performance, scalable file systems have long been
requests whenever possible. a goal of the high-performance computing (HPC) com-

T T T T 1
0 1000 2000 3000 4000 5000
Throughput (requests per second)
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munity. HPC systems place a heavy load on the file sys¢pandable storage, fault tolerance, and POSIX compat-
tem [24, 31, 36], placing a high demand on the file systahility that Ceph provides. pNFS [13] and the Panasas
to prevent it from becoming a bottleneck. As a resulbbject-based file system [39] stripe data across network-
there have been many scalable file systems that attemttached disks to deliver very high data transfer rates, but
meet this need; however, these file systems do not supploely both suffer from a bottleneck in metadata lookups.
the same level of scalability that Ceph does. Some lardeistre [3, 30] has similar functionality: it supports nearl
scale file systems, such as OceanStore [18] and Farsitegfhjitrary striping of data across object storage targets, b
are designed to provide petabytes of highly reliable stirhashes path names to metadata servers. This approach
age, and may be able to provide simultaneous accessligiributes the metadata load, but destroys locality and
thousands of separate files to thousands of clients. Hanakes POSIX compatibility difficult, despite approaches
ever, these file systems are not optimized to provide higtuch as LH3 [4]. GPFS [29] also suffers from metadata
performance access to a small set of files by tens of th@galing difficulties; while block allocation is largely lkc
sands of cooperating clients. Bottlenecks in subsystefree, as it is in most object-based storage systems, meta-
such as name lookup prevent these systems from melktta is not evenly distributed, causing congestion in meta-
ing the needs of a HPC system. Similarly, grid-based fitlata lookups. Moreover, none of these systems permits
systems such as LegionFS [40] are designed to coordiratdient to locate a particular block of a file without con-
wide-area access and are not optimized for high perfetting a centralized table. Sorrento [34] alleviates this
mance in the local file system. problem somewhat and evenly distributes data and meta-

Parallel file and storage systems such as Vesta [7], G%Ei‘:[a among all Qf the servers, but iny perforr_ns we_II n
ley [23], RAMA [22], PVFS and PVFS2 [6, 19, theenwronments with |OW I_e\_/els of write sharing in which
Global File System [32] and Swift [5] have extensive Sug_roces?ors wolrk on qc'jS.JO'an.dﬁlta Sel.tsblFA? [28] TOCE.{TGS
port for striping data across multiple disks to achieve ve % conflnuous Y provi lngt tl)? yFrAeBl)a € §dorage, Whl' eh
high data transfer rates, but do not have strong suppI gperiormance 1S acceptable, provides very hig

for scalable metadata access. For example, Vesta per Péab'“ty at the cost O_f somewhat .reduc_ed performance.
applications to lay their data out on disk, and allows i -eph takes the opposite app_roa_c_h. provide very high per-
dependent access to file data on each disk without rey-nance and reasonable reliability.

erence to shared metadata. However, Vesta, like many

other parallel file systems, does not provide scalable s&p- Future Work

port for metadata lookup. As a result, these file Syste@gp, pyilds upon many distinct and active research topics
typically provide poor performance on workloads that 4%nhd opens up a variety of areas for future research. Now
cess many small files as well as workloads that requifey he pasic Ceph infrastructure is in place, we can be-

many metadata operations. They also typically suffgf, 1 focus on performance optimization and additional
from block allocation issues: blocks are either allocat?ﬁlnctionality

centrally or, in the Global File System, via a Iock-basedA number of key MDS optimizations and enhance-

mechanism. As a result, these file system_s do not Sclfﬁlgnts are planned: the hashing of individual directories,
well to write requests from thousands of clients to thoyng tailure recovery, and a distributexhchor subsys-
_sandg qf disks. Similarly, _the Google File System [19 m used for facilitating multiple hard links and snapshots
is optimized for very I_argeﬂles and avyorkload con§|st|n ithough most of the more challenging design problems
largely of reads and file appends, and is _not well-suited i4ve been solved, a number of the remaining systems and
amore general HPC workload because it does not sup ocols will involve substantial effort, particularlie

high-concurrency general purpose access to the file s Rtributed journaling and failure recovery processed, an

tem. related correctness proofs.

Recently, many file systems and platforms, including The MDS load balancer currently employed is rela-
Federated Array of Bricks (FAB) [28], IceCube [17]tively simplistic, taking only a single performance and re-
Lustre [3, 30], GPFS [29], the Panasas file system [38hurce metric into consideration. Simulations [38] sug-
pNFS [13], Sorrento [34], and zFS [26] have been dgest that a number of resources may limit MDS perfor-
signed around network-attached storage [11, 12] or thrance, and that all of them should potentially be consid-
closely related object-based storage paradigm [2]. All efed. The load balancer should further be robust to a wide
these file systems can stripe data across network-attachariety of metadata workloads, a prospect that suggests
devices to achieve very high performance, but they do ribe importance of additional intelligence. The applicatio
have the combination of scalable metadata performanaemachine learning algorithms to the variety of replica-
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tion and load distribution parameters is an exciting areaCeph’s data distribution algorithm, RUSH, addresses
for potential further research. another key challenge—how to assign data to nodes such
A number of Ceph protocol revisions are planned #3at it can be rapidly located, workloads are evenly bal-
well, most notably surrounding the possibility of end-tcanced, and minimal data movement is required as object
end metadata consistency at the application (POSIX) legédres are added to or removed from the system. The
through the use of short-term leases on inode and natéSH family of algorithms achieve these goals with a fast
space metadata. Lazy management of file access ca'lmative process that distributes data according to a hash
bilities and leases on path to inode mappings will furthnction, but does not require the massive data movement
allow successivepen andcl ose operations to proceedthat standard rehashing would require upon the addition
local to clients without MDS interaction, while streamlinor removal of storage devices.
ing buffer cache consistency issues—a potential boon foilObjects can be considered files, and stored using a
client performance. general-purpose file system such as ext2/3 or XFS. How-
Additional research in alternative object file systenfer, our results demonstrate that by targeting the spe-
for the OSDs, storage system quality of servicephec- cific needs of objects (as opposed to files), the OBFS ob-
tion interface that allows named groups of objects to ma§¢t file system provides excellent low-level object stor-
aged by each OSD, and improved replication and recov8ége performance tailored to object workloads present in
management are also in progress. Finally, recent resedftéh Ceph file system. OBFS provides efficient storage
has described abstract models for common large-scale 8Rd high performance through a region-based architec-
tributed processing applications like MapReduce [8] thire supporting multiple block sizes. Small blocks allo-
involve distributed data processing, structured commufated with extents provide efficient performance for small
cation, and storage. These types of operations are c&jects, while large blocks equal to the system stripe unit
mon to data mining, search engine, and other app“cséze provide extremely high performance for large objects.
tions. The OSD intelligent disk model and Ceph’s data Our results demonstrate Ceph’s performance and scal-
distribution and distributed replication and recovery-pr@Pility and hint at the tremendous potential inherent in
cesses make it an ideal platform for implementing a genlte object-based storage model. Now that the basic Ceph

alized distributed data processing architecture (for whifrastructure is complete, our future work will focus
MapReduce might be but one application). on characterizing the bottlenecks that arise in distrithute

object-based storage systems and optimizing Ceph’s per-
formance, as well as developing new avenues of research
6 Conclusions that are enabled by Ceph'’s highly distributed architecture
) ) - Although not quite ready for public distribution, a goal
Object-based storage promises scalability and highthe Ceph project is to release the code to the public
performance by distributing low-level allocation an@omain where it can serve as a reference implementation

scheduling operations to the storage devices, enablingya: others can use for their own research, to experiment
tremendous amount of data parallelism in the storage syl puild upon, and compare agaifist

system. However, the basic model and the scale of the

lstorage_ sylstg_ms it enables t;;resentt rgatny sigr!ificz?;\t %m;‘bknowledgments

enges including managing the metadata, storing the data .

efficiently on each OSD, distributing the data effectivel e WOUIg like to glank thﬁ éacultyfandhsﬁuﬂelnts O:; the_d
scaling the storage system dynamically, and managing grage Systems Research Center for their help and guid-

frequent disk failures that are expectedin a muIti-petab{El_nce' This re;earch was sponsored in part by Layvrence
storage system. ivermore National Laboratory, Los Alamos National

The Ceph object-based storage system addresses t ggoratory, and Sandia National Laboratory under con-

challenges, providing robust, high-performance, flex] 32 B520714. Additional supportwas provided by SSRC

industrial sponsors.
ble, scalable storage. Ceph’s metadata management ad- P

dresses one of the most_ vexing proplems in h|ghl){ scﬁ-eferences

able storage—how to efficiently provide a single uniform .

directory hierarchy obeying POSIX directory semanticdl] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
with performance that scales linearly with the number mzk’RJ'VS' DO‘;C‘?““ "]:'A"FLOS":’_?E'_f:' Rd' Lorcdh, M.'IThb?Imer’d
of metadata servers. Dynamic Subtree Partitioning is a and R. Wattenhofer. 2 : Federated, avallable, an
uniquely scalable approach, offering both efficiency and reliable storage for an incompletely trusted environment.
the ability to adapt to varying workloads. 20ur specific goal is to release the code before FAST
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