
The Effectiveness of Deduplication on Virtual Machine
Disk Images

Keren Jin
Storage Systems Research Center
University of California, Santa Cruz

kjin@cs.ucsc.edu

Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz

elm@cs.ucsc.edu

ABSTRACT
Virtualization is becoming widely deployed in servers to ef-
ficiently provide many logically separate execution environ-
ments while reducing the need for physical servers. While
this approach saves physical CPU resources, it still consumes
large amounts of storage because each virtual machine (VM)
instance requires its own multi-gigabyte disk image. More-
over, existing systems do not support ad hoc block sharing
between disk images, instead relying on techniques such as
overlays to build multiple VMs from a single “base” image.

Instead, we propose the use of deduplication to both re-
duce the total storage required for VM disk images and in-
crease the ability of VMs to share disk blocks. To test the
effectiveness of deduplication, we conducted extensive eval-
uations on different sets of virtual machine disk images with
different chunking strategies. Our experiments found that
the amount of stored data grows very slowly after the first
few virtual disk images if only the locale or software con-
figuration is changed, with the rate of compression suffering
when different versions of an operating system or different
operating systems are included. We also show that fixed-
length chunks work well, achieving nearly the same com-
pression rate as variable-length chunks. Finally, we show
that simply identifying zero-filled blocks, even in ready-to-
use virtual machine disk images available online, can provide
significant savings in storage.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management;
D.4.8 [Operating Systems]: Performance

General Terms
measurement, performance

1. INTRODUCTION
In modern server farms, virtualization is being used to

provide ever-increasing number of servers on virtual ma-
chines (VMs), reducing the number of physical machines re-

!"#$%&&%'()' $*+" ,%-%)*. '# /*#, 0'1%"& '2 *.. '# 1*#) '2)/%& 3'#+ 2'#
1"#&'(*. '# 0.*&&#''$ 4&" %& -#*()", 3%)/'4) 2"" 1#'5%,",)/*) 0'1%"& *#"
(') $*," '# ,%&)#%64)", 2'# 1#'2) '# 0'$$"#0%*. *,5*()*-" *(,)/*) 0'1%"&
6"*#)/%& (')%0" *(,)/" 24.. 0%)*)%'('()/" 2 #&) 1*-"7 8' 0'19 ')/"#3%&":)'
#"146.%&/:)' 1'&) '(&"#5"#& '#)' #",%&)#%64)")' .%&)&: #";4%#"& 1#%'# &1"0%2 0
1"#$%&&%'(*(,<'# * 2""7
SYSTOR 2009=*9 >??@: A*%2*: B&#*".
C'19#%-/) >??@ DC=EE@FGHIHJ?KKGHJ>LHJ<?@<?K 777MK7??7

quired while preserving isolation between machine instances.
This approach better utilizes server resources, allowing many
different operating system instances to run on a small num-
ber of servers, saving both hardware acquisition costs and
operational costs such as energy, management, and cooling.
Individual VM instances can be separately managed, allow-
ing them to serve a wide variety of purposes and preserving
the level of control that many users want. However, this
flexibility comes at a price: the storage required to hold
hundreds or thousands of multi-gigabyte VM disk images,
and the inability to share identical data pages between VM
instances.

One approach saving disk space when running multiple
instances of operating systems on multiple servers, whether
physical or virtual, is to share files between them; i. e.,
sharing a single instance of the /usr/local file via network
mount. This approach is incompatible with VM disk im-
ages, however, since the internal file structure of a VM disk
image is invisible to the underlying file system. Standard
compression such as that provided by the Lempel-Ziv com-
pression used in gzip [30], is ineffective because, while it
can reduce the storage space used by a single disk image, it
cannot eliminate commonalities between files.

Instead, others have proposed the use of deduplication to
reduce the storage space required by the many different VM
disk images that must be stored in a medium to large scale
VM hosting facility [18]. While it seems clear that dedu-
plication is a good approach to this problem, our research
quantifies the benefits of using deduplication to reduce the
storage space needed for multiple VM disk images. Our ex-
periments also investigate which factors impact the level of
deduplication available in different sets of VM disk images,
some of which are under system control (e. g., fixed versus
variable-sized chunking and average chunk size) and some of
which are dependent on the usage environment (e. g., oper-
ating system version and VM target use). By quantifying
the effects of these factors, our results provide guidelines for
both system implementers and sites that host large numbers
of virtual machines, showing which factors are important to
consider and the costs of making design choices at both the
system and usage level.

The paper is organized as follows. Section 2 reviews re-
lated works and background material on deduplication and
virtual machines. Section 3 introduces our chunking and
deduplication approaches to analyze VM disk images. Sec-
tion 4 evaluates the effect of deduplication on sets of VM disk
images for different purposes. Section 5 discusses directions
for future work, and Section 6 summarizes our conclusions.

2. BACKGROUND
Our research studies the effectiveness of applying dedupli-

cation to virtual machine environments. In this section, we
provide some background on both technologies.

2.1 Virtual Machines
Virtual machine monitors provide a mechanism to run

multiple operating system instances on a single computer
system. Systems such as Xen [4], VMware, and QEMU [5]
provide a full execution environment to “guest” operating
systems, using many techniques to convince each guest op-
erating system that it has control of a full computer system.

One technique used by virtual machine monitors is the use
of a file in the underlying “host” operating system to hold
the contents of the guest’s disk. These virtual disk images,
whose size is specified when the virtual machine is created,
can be either flat or sparse. Flat images are fixed-size files,
with one block for each block in the guest’s disk. Initially,
unused blocks are zero-filled; thus, flat disk images tend to
have a lot of zero-filled blocks, particularly if they are rela-
tively large to allow the guest operating system space into
which to store additional data. Sparse images, unlike flat im-
ages, only contain virtual disk blocks that have been written
at least once. Thus, sparse images can occupy relatively lit-
tle space when created, and only grow as the guest operating
system uses more and more of its virtual disk. Note, how-
ever, that sparse images can contain zero-filled blocks, since
the guest operating system may write a block containing all
zeros; such a block would be stored by the virtual machine
in the disk image file. While there is no global standard
for virtual machine disk images, specifications for one file
format is available from VMware [25].

2.2 Deduplication
Deduplication is an technology that can be used to reduce

the amount of storage required for a set of files by identifying
duplicate “chunks” of data in a set of files and storing only
one copy of each chunk [17, 19]. Subsequent requests to store
a chunk that already exists in the chunk store are done by
simply recording the identity of the chunk in the file’s inode
or block list; by not storing the chunk a second time, the
system stores less data, thus reducing cost.

Different implementations of deduplication use different
techniques to break files into chunks. Fixed-size chunking,
such as that used in Venti [20] simply divides files at block
boundaries. Variable-size chunking, used in systems such
as LBFS [17] and Deep Store [28], computes a Rabin finger-
print [21] or similar function across a sliding window to place
chunk boundaries, resulting in blocks that may have differ-
ent lengths. This approach typically provides better dedu-
plication, since it is more resistant to insertion or deletion
of a few bytes in the middle of a file; however, it may neg-
atively impact performance by requiring non-block aligned
I/O requests.

While their approaches to identifying chunks differ, both
fixed-size and variable-size chunking use cryptographically-
secure content hashes such as MD5 or SHA1 [2] to iden-
tify chunks, thus allowing the system to quickly discover
that newly-generated chunks already have stored instances.
Even for a 128 bit MD5 hash, the chance of a single colli-
sion among 1015 chunks—1018 bytes, assuming an average
chunk size of 1KB—is about 10−9 [14]. By using a 160 bit
hash such as SHA1, we can reduce the probability of a single

collision in an exabyte-scale chunk store to about 7× 10−18.
Collisions in SHA1 have been reported [26], and intention-
ally forging different but still equivalently meaningful in-
dependent chunks is a potential security breach, though it
is not yet practical [9]. While these two issues might pre-
vent a system implementer from using SHA1 [13], we chose
SHA1 to name chunks in our experiments because these is-
sues clearly do not impact the statistical results gathered
from our experiments—one or two “false collisions” would
not significantly alter our findings.

Deduplication and similar technologies have already been
used to reduce bandwidth and storage demands for network
file systems [17, 1, 11], reduce the storage demands created
by VM checkpoints [18], store less data in backup environ-
ments [8, 29, 20], and reduce storage demands in archival
storage [28, 27]. Using deduplication in an online system
requires fast identification of duplicate chunks; techniques
such as those developed by Bhagwat, et al. [6] and Zhu,
et al. [29] can help alleviate this problem. Moreover, Nath,
et al. found that deduplication was sufficiently fast for stor-
ing checkpoints of VM images [18] and the Difference En-
gine [12] used deduplication to share in-memory pages be-
tween different virtual machine instances. While these uses
are not identical to read-write sharing of VM disk image
chunks, the relatively low performance overhead for other
uses of deduplication in VM images suggests that a file sys-
tem for VM disk images should be sufficiently fast to use in
a production environment.

Several projects have investigated the use of deduplication
in virtualization environments. Nath, et al. used content-
addressable storage to store multiple checkpoints from a
hosting center running multiple virtual machines [18]. Their
experiments covered 817 checkins across 23 users and 36 vir-
tual machines. However, this study created “gold images”
for each operating system (Windows XP and Linux) upon
which each VM was based; while the gold images received
security patches, users did not have a choice of which Linux
distribution to run. Our research explores a much wider
range of Linux configurations, exposing the factors that af-
fect deduplication. The Difference Engine project [12] used
deduplication to allow multiple virtual machines to share in-
memory pages. This approach proved effective, though the
level of deduplication was lower for memory page dedupli-
cation than for storage deduplication. Moreover, the VMs
were limited in sample size;in contrast, the virtual disks we
studied showed a large amount of variation. Liguori and Van
Hensbergen explored the use of content addressable storage
(CAS) with virtual machines [16]. They examined overlap
between pairs of VM disk images for both Linux and Win-
dows XP, measuring the amount of deduplication possible
between them. They then experimented with an imple-
mentation of CAS in Qemu, showing that Venti, a content-
addressable store, performs worse than “vanilla” systems,
though this may be due to Venti’s inefficiency. Their dedu-
plication results confirm some of our findings, but they do
not exhaustively study different operating system character-
istics and their impact on deduplication effectiveness.

3. METHODOLOGY
Since our experiments were focused on the amount of

deduplication possible from sets of VM disk images, we first
broke VM disk images into chunks, and then analyzed dif-
ferent sets of chunks to determine both the amount of dedu-

Name Value

divisor 512, 1024, 2048, 4096 (bytes)
maximum chunk size divisor × 2
minimum chunk size divisor / 16

irreducible polynomial 0x91407E3C7A67DF6D
residual 0

sliding window size minimum chunk size / 2

Table 1: Parameters for variable-size chunking.

plication possible and the source of chunk similarity. Sec-
tion 3.1 discusses the techniques we used to generate chunks
from VM disk images, and Section 3.2 discusses the approach
we used to measure deduplication effectiveness.

We use the term disk image to denote the logical abstrac-
tion containing all of the data in a VM, while image files
refers to the actual files that make up a disk image. A disk
image is always associated with a single VM; a monolithic
disk image consists of a single image file, and a spanning
disk image has one or more image files, each limited to a
particular size, typically 2GB. When we refer to “disk im-
ages,” we are referring to multiple VM disk image files that
belong to multiple distinct VMs. Finally, we use the term
chunk store to refer to the system that stores the chunks
that make up one or more disk images.

3.1 Chunking
In order to locate identical parts of disk images, we di-

vide the image files into chunks to reduce their granular-
ities. This is done by treating each image file as a byte
stream and identifying boundaries using either a “constant”
function (for fixed-size chunking) or a Rabin fingerprint (for
variable-sized chunking). A chunk is simply the data be-
tween two boundaries; there are implicit boundaries at the
start and end of each image file. Chunks are identified by
their SHA1 hash, which is calculated by running SHA1 over
the contents of the chunk. We assume that chunks with the
same chunk ID are identical; we do not do a byte-by-byte
comparison to ensure that the chunks are identical.

We implemented both fixed-size and variable-size chunk-
ing to test the efficiency of each approach in deduplicating
disk images. Fixed-size chunking was done by reading an
image file from its start and setting chunk boundaries ev-
ery N bytes, where N is the chunk size. For variable-size
chunking, we calculated 64-bit Rabin fingerprint using the
irreducible polynomial from Table 1 for a fixed-size sliding
window, and slid the window one byte at a time until the
fingerprint modulo the divisor equals to the residual; at this
point, a boundary was created at the start of the window, as
shown in Figure 1. Of course, this approach results in chunks
that may have greatly varying sizes, so we imposed mini-
mum and maximum chunk sizes on the function to reduce
the variability, as is usually done in real-world systems [28].
The specific parameters we used in variable-size chunking
are shown in Table 1; these parameters were chosen to en-
sure that the chunking algorithm generates chunks with the
desired average chunk size. We conducted experiments for
average chunk sizes of 512, 1024, 2048, and 4096 bytes for
both fixed-size and variable-size chunking.

We chunked each image file separately because fixed-size
chunking exhibits the “avalanche effect”: although altering
bytes in the file only changes the corresponding chunk IDs,
inserting or removing bytes before the end of an image file
changes all of the remaining chunk IDs, unless the length of

(a) Fixed-size chunking
with chunk size 512 B.

(b) Variable-size chunking
with expected average
chunk size 512 B.

Figure 1: Chunking a file with size 0xF300 bytes.

insertion or deletion is multiple of the chunk size for fixed-
size chunking. Thus, if image file sizes are not multiples of
the chunk size, the result of chunking across files is different
than that of chunking each separately. Also, because both
monolithic and spanning image files have a header specific to
the VM instance, chunking sequentially across the spanning
files does not restore the original guest file system because
the last chunk of each file could be shorter than the specified
chunk size.

Zero-filled chunks are common in VM disk images, and
come from three sources. One source is VM-specific: disk
images can contain zero blocks corresponding to space not
yet used by the virtual machine. Another source is runs
of zeroes in the file system, caused by space that has been
zeroed by the operating system running in the VM. The
third source is application-generated zero-filled blocks, as
are sometimes generated by databases and other applica-
tions. The relative frequency of the three sources of zeroed
blocks varies in different VMs. While the first source is VM-
generated, different types of disk images (flat versus. sparse)
can have different numbers of zero blocks in them. Decisions
such as the maximum disk image size can influence this num-
ber as well. The other two sources of zero blocks are due
to the guest operating system and applications; thus, they
are less affected by the choice of virtual disk size. In fixed-
size chunking, all zero-filled chunks are identical—they all
contain identical content. In the variable-size chunking ex-
periments, runs of zeros do not generate boundaries, and
thus result in chunks of the maximum chunk size. Since
all zero-filled chunks are the same (maximal) size (except
perhaps for a run at the end of an image file), they are all
identical to one another.

To further reduce space, we compressed each chunk using
zip after hashing it to generate the chunk ID. This approach
is often used with deduplication, and results in additional
space saving with no loss of fidelity.

3.2 Deduplication
The deduplication process is simple: for each chunk being

stored, attempt to locate an existing instance in the chunk
store. If none is found, the new chunk is added to the chunk
store; otherwise, the new chunk is a shared chunk. As de-
scribed in Section 3.1, nearly all zero chunks are identical,
except for a non-maximal length zero chunk at the end of an
image file. Since even large spanning disk images have rela-
tively few files, most of which end with non-zero chunks, an
optimization that recognizes such non-maximal length zero
chunks would provide little benefit.

Figure 2: Share categories of chunks. Chunks seen
for the first time must be stored; subsequent occur-
rences need not be stored.

The chunk ID, which is generated from the SHA1 hash of
the chunk’s content, is the only value used to look up existing
chunks. Even for an exabyte-scale chunk store, collisions
would be highly unlikely; for the multi-terabyte chunk store
in our experiments, the chances of collision are even smaller.
We calculate the deduplication ratio for a given chunk store
and chunking method by:

1 −
Stored bytes of all disk images

Original bytes of all disk images

The deduplication ratio is a fraction in [0, 1), since there is
at least one stored chunk in a chunk store, and the worst
possible case is that there are no duplicate chunks. We ex-
clude per-chunk overhead in our studies; this overhead is less
than 4% for 512 B chunks, and smaller for larger chunks.

We classify each occurrence of a chunk into one of four
categories, shown in Figure 2. When a chunk appears ex-
actly once in the entire set of VM disk images, it is called
an unshared chunk, labeled “none” in Figure 2. Chunks
that appear in more than one disk image are termed inter-
image shared chunks, and chunks that appear multiple times,
within a single disk image but not elsewhere are called intra-
image shared chunks. Chunks that appear in multiple disk
images and appear more than once in at least one of those
images are inter-intra-image shared chunks. Zero-filled chunks
are tracked separately; however, they are typically inter-
intra-image shared chunks in sets with more than one disk
image because zero-filled chunks appear in every disk image
that we examined.

As Figure 2 shows, all chunks must be stored the first
time they are seen. Subsequent occurrences of each chunk
are not stored, reducing the total storage space required to
store the set of disk images. All stored chunks are grouped
together for our experiments, while non-stored chunks are
classified by the disk images in which other occurrences of
the chunks are found. Thus, a chunk c that occurs one time
in disk image A and then two times in disk image B would
result in one stored chunk and two inter-intra shared chunks
because there are occurrences of chunk c in two separate disk
images, and multiple occurrences of chunk c in at least one
disk image. The total size of a chunk store before dedu-
plication is thus the sum of the sizes of the stored chunks
and three shared categories. This notation differs from the
metrics used by another study [16], which only concentrates
on “duplicate” chunks. In their study, two identical disk im-
ages would be 100% similar, and 40% chunks would typically
need to be stored.

Changing the processing order for a set of disk images
can produce different intermediate results for the number
and type of shared chunks and the deduplication ration, but
the final result will always be the same for a given set of
disk images. For example, processing disk images in the or-
der 〈A1, A2, B〉 would result in a high level of inter-image
sharing after the second disk image was added, assuming
that images A1 and A2 are very similar and both dissimi-
lar to image B. However, processing the files in the order
〈A1, B, A2〉 would result in a much lower deduplication ratio
after the second disk image was added, but the final result
would be the same as for the first processing order.

4. EXPERIMENTS
To determine which factors affect deduplication ratios for

sets of disk images, we first downloaded the pre-made disk
images listed in Table 2 from Internet sites including VMware’s
Virtual Appliance Marketplace [24], Thoughtpolice [23], and
bagvapp’s Virtual Appliances [3] site. Most of the VMs
were created in VMware’s format, and were compatible with
VMware Server 2.0. The VirtualBox VMs were compatible
with VirtualBox 2.0.

For the figures in this section, stored chunks are counted
the first time seen during the deduplication process, each of
which must be stored. Each of the other chunk categories
is reduced in size by its remaining instances. Zero chunks
are isolated as a separate chunk class, not part of inter-intra
shared chunk.

4.1 Overall Impacts
Before going into detail on how much specific factors im-

pact deduplication, we evaluated deduplication for closely
related disk images—a set of images all based on Ubuntu 8.04
LTS—and compared it to a set of disk images from widely
divergent installations, including BSD, Linux, and OpenSo-
laris VMs. The results are shown in Figures 3 and 4. As
these figures show, deduplication of operating systems with
similar kernel versions and packaging systems deduplicate
extremely well, with the system able to reduce storage for
the 14 disk images by over 78% and 71% for 1 KB and 4 KB
chunk size, respectively. Of the 22% of the chunks that are
stored, 12% are chunks that occur exactly once and 10%
are chunks that occur more than once, with only a single
instance stored. Given this trend, it is likely that additional
Ubuntu 8.04 disk images would add little additional operat-
ing system data. It is important to note that these images
were pre-compiled and gathered from various sources; they
were not created by a single coordinated entity, as was done
by Nath, et al. [18], suggesting that hosting centers can allow
users to install their own VMs and still gain significant sav-
ings by using deduplication. Since it takes more time and
storage overhead to generate smaller chunks, 4KB chunk
size might be a good idea if space allows.

On the other hand, a set of disk images consisting of 13 op-
erating system images including various versions of BSD,
OpenSolaris, and Linux did not fare as well, as Figure 4
shows. In such a case, unique data is the largest category,
and deduplication saves less than half of the total space,
with zero-filled blocks second. This is close to the worst-case
scenario for deduplication, since the disk images differed in
every possible way, including operating system and binary
format. That this approach was able to achieve a space sav-
ings of close to 50% is encouraging, suggesting that adding

Index Name and version Kernel File system Desktop Image size Disk type

1 Arch Linux 2008.06 Linux 2.6.25-ARCH ext3 GNOME 3.5G XS
2 CentOS 5.0 Linux 2.6.18-8.el5 ext3 None 1.2G XS
3 CentOS 5.2 Linux 2.6.18-92.1.10.el5 ext3 GNOME 3.3G MS
4 DAMP Dragonfly 1.6.2-RELEASE ufs None 1.1G MF
5 Darwin 8.0.1 Darwin 8.0.1 HFS+ None 1.5G MF
6 Debian 4.0.r4 Linux 2.6.18-6-486 ext3 None 817M XS
7 Debian 4.0 Linux 2.6.18-6-686 ext3 GNOME 2.5G MS
8 DesktopBSD 1.6 FreeBSD 6.3-RC2 ufs KDE 8.1G XF
9 Fedora 7 Linux 2.6.21-1.3194.fc7 ext3 GNOME 2.9G XS
10 Fedora 8 Linux 2.6.23.1-42.fc8 ext3 GNOME 3.4G XS
11 Fedora 9 en-US Linux 2.6.25-14.fc9.i686 ext3 GNOME 3.4G XS
12 Fedora 9 fr Linux 2.6.25-14.fc9.i686 ext3 GNOME 3.6G XS
13 FreeBSD 7.0 FreeBSD 7.0-RELEASE ufs None 1.2G XS
14 Gentoo 2008.0 Linux 2.6.24-gentoo-r8 ext3 Xfce 5.5G XS
15 Gentoo 2008.0 with LAMP Linux 2.6.25-gentoo-r7 ext3 None 8.1G XF
16 Knoppix 5.3.1 Linux 2.6.24.4 ext3 KDE 13G XS
17 Kubuntu 8.04.1 Linux 2.6.24-19-generic ext3 KDE 2.6G MS
18 Mandriva 2009.0 Linux 2.6.26.2-desktop-2mnb ext3 GNOME 3.3G XS
19 NAMP NetBSD 3.1 (GENERIC) ffs None 1.1G MF
20 OAMP OpenBSD 4.0 ffs None 804M MS
21 OpenBSD 4.3 OpenBSD 4.3 ffs None 558M MS
22 OpenSolaris 2008.5 SunOS 5.11 ZFS GNOME 3.8G XS
23 openSUSE 11.0 Linux 2.6.25-1.1-pae ext3 KDE 8.1G MF
24 PC-BSD 1.5 FreeBSD 6.3-RELEASE-p1 ufs KDE 2.2G MS
25 Slackware 12.1 Linux 2.6.24.5-smp ext3 KDE 3.5G MS
26 Ubuntu 8.04 en-US Linux 2.6.24-19-generic ext3 GNOME 3.5G MS
27 Ubuntu 8.04 fr Linux 2.6.24-19-generic ext3 GNOME 2.5G XS
28 Ubuntu 8.04 JeOS Linux 2.6.24-16-virtual ext3 None 293M MS
29 Ubuntu 6.10 Server Linux 2.6.17-10-server ext3 None 520M XS
30 Ubuntu 7.04 Server Linux 2.6.20-15-server ext3 None 557M XS
31 Ubuntu 7.10 Server Linux 2.6.22-14-server ext3 None 543M XS
32 Ubuntu 8.04 Server Linux 2.6.24-16-server ext3 None 547M XS
33 Ubuntu 8.04 LTS (1) Linux 2.6.24-16-server ext3 GNOME 3.0G XS
34 Ubuntu 8.04 LTS (2) Linux 2.6.24-16-server ext3 GNOME 2.9G MS
35 Ubuntu 8.04 LTS (3) Linux 2.6.24-16-server ext3 GNOME 2.2G XS
36 Ubuntu 8.04 LTS (4) Linux 2.6.24-16-server ext3 GNOME 2.9G MS
37 Ubuntu 8.04 LTS (5) Linux 2.6.24-16-server ext3 GNOME 2.9G MS
38 Ubuntu 8.04 LTS (6) Linux 2.6.24-16-server ext3 None 547M XS
39 Ubuntu 8.04 LTS (7) Linux 2.6.24-16-server ext3 GNOME 2.1G XS
40 Ubuntu 8.04 LTS (8) Linux 2.6.24-16-server ext3 None 1.1G MS
41 Ubuntu 8.04 LTS (9) Linux 2.6.24-16-server ext3 None 559G MS
42 Ubuntu 8.04 LTS (10) Linux 2.6.24-16-server ext3 GNOME 3.2G MS
43 Ubuntu 8.04 LTS (11) Linux 2.6.24-16-server ext3 None 604M MS
44 Ubuntu 8.04.1 LTS (12) Linux 2.6.24-16-server ext3 GNOME 2.4G MS
45 Ubuntu 8.04.1 LTS (13) Linux 2.6.24-16-server ext3 GNOME 8.1G XF
46 Ubuntu 8.04.1 LTS (14) Linux 2.6.24-16-server ext3 None 1011M XS
47 Xubuntu 8.04 Linux 2.6.24-16-generic ext3 Xfce 2.3G XS
48 Zenwalk 5.2b Linux 2.6.25.4 ext3 Xfce 2.5G XS

49 Ubuntu 8.04 Server on VMware Linux 2.6.24-16-server ext3 None 1011M MS
50 Ubuntu 8.04 Server on VirtualBox Linux 2.6.24-16-server ext3 None 969M MS
51 Ubuntu 8.04 Server on VMware Linux 2.6.24-16-server ext3 None 4.1G XF
52 Ubuntu 8.04 Server on VirtualBox Linux 2.6.24-16-server ext3 None 4.1G MF

Table 2: Virtual machine disk images used in the study. Under disk type, M is a monolithic disk image file,
X is a disk image file split into 2 GB chunks, S is a sparse image file, and F is a flat image file. For example,
MS would correspond to a single monolithic disk image formatted as a sparse image.

further VMs will result in more space savings, though not
as good as for the case in which all VMs are highly similar.

In our next experiment, we compared deduplication lev-
els for chunk stores consisting only of VMs with a single
operating system—BSD or Linux—to that of two more het-
erogeneous chunk stores: one with BSD, OpenSolaris, and
Darwin (labeled “Unix”), and another with all types of op-
erating systems (labeled “All”). The All chunk store is a
super set of the other three chunk stores, and contains more
flat disk images. As Figure 5 shows, the All chunk store
achieved the best deduplication ratio, indicating that, even

for operating systems of different lineage, there is redun-
dancy available to be removed by deduplication. This seem-
ingly contradictory high deduplication level comes from two
sources. The first is zero chunks, as the All chunk store
includes more flat disk images than any other chunk stores.
The second is additional inter chunks, as they appeared only
once in BSD or Linux chunk stores and were considered as
stored chunks. Nevertheless, the higher levels of sharing for
non-zero chunks in the Linux chunk store indicates that the
Linux disk images were more homogeneous than the BSD
images and All images.

(a) Average chunk size = 1KB.

(b) Average chunk size = 4KB.

Figure 3: Growth of data in different categories for
14 different Ubuntu 8.04 LTS instances. Stored data
grows very slowly after the second VM is integrated.
In these figures, stored data includes the first in-
stance of each chunk, regardless of how it is shared.
The sharp increase in size at the 5th VM is due to
the use of a flat disk image, in which there are a
large number of zero-filled (empty) sectors.

Another notable feature in Figure 5 is that the fraction
of zero chunks decreases markedly from the 512 B Linux
case to the 4KB Linux case. While the overall number of
chunks decreases by a factor of 8 (4096/512), the fraction of
chunks that contain all zeros shrinks, with a corresponding
increase in unique chunks, indicating that most of the zero
chunks are 2KB or less in length. The figure also shows that,
while the relative fractions of zero chunks and unique chunks
changes from 512B chunks to 4KB chunks, the amount of
sharing changes relatively little, indicating that chunk size
may have relatively little impact on relative frequency of
shared chunks.

Figure 6 shows the cumulative distribution of chunks by
both count and total size in the Linux chunk store. Chunks
that appear only once are unique chunks and must be stored;
for other chunks, the chunk store need only contain one copy
of the chunk. As the figure shows, over 70% of chunks occur
exactly once, and these chunks make up about 35% of the
undeduplicated storage. The zero chunks take about 20%
storage, as shown in Figure 5; they are particularly common
in flat disk images.

4.2 Impact of Specific Factors
Our next set of experiments examine many factors that

might affect deduplication, identifying those that are most
critical and quantifying their effects on the deduplication
ratio.

Figure 4: Growth of category data for 13 Unix and
Linux virtual machines, using variable size chunking,
with an average chunk size of 1 KB. Unique data
grows significantly as each disk image is added. As
in Figure 3, the sharp increase in size at the 3rd VM
is due to a large number of empty, zero-filled sectors
in a flat disk image.

Figure 5: Effects of varying operating system type
on deduplication. All experiments used 512 B
variable-size chunks, except for the Linux experi-
ment that uses 4 KB variable-size chunks. There is
more intra-inter sharing in Linux than in BSD, in-
dicating that the former is more homogeneous.

We first examined the effect of chunk size and boundary
creation technique on deduplication ratio. Figure 7 shows
the effect of deduplicating a set of disk images for differ-
ent versions of Ubuntu Server using fixed and variable-size
chunking for different average chunk sizes. As expected,
smaller chunk sizes result in better deduplication ratios; this
is done by converting unique chunks into shared chunks and
zero chunks. Interestingly, the number of zero chunks grows
significantly as chunk size decreases, indicating that zero
chunks are more likely to be generated by the operating sys-
tem or applications than by the VM software writing out the
virtual disk, since zeros in the virtual disk would likely be
4KB or larger. It is also important to note that fixed-size
chunking is even more effective than variable-size chunking
in this experiment, suggesting that fixed-size chunking may
be appropriate for VM disk images.

We next examined the effects of different releases on dedu-
plication effectiveness. Figure 8 shows the deduplication ra-
tios for consecutive and non-consecutive releases of Ubuntu
and Fedora. Ubuntu78 is deduplicated against Ubuntu 7.10
and Ubuntu 8.04, and Ubuntu68 is deduplicated against

Figure 6: Cumulative distribution of chunks by
count and total size. The upper line shows the cu-
mulative number of chunks with total count of n or
less, and the lower line shows the total space that
would be consumed by chunks with count n or less.
The data is from the Linux chunk store with chunk
size 512 B. As the graph shows, most chunks occur
fewer than 14 times, and few non-zero chunks ap-
pear more than 50 times in the set of disk images.

Figure 7: Effects of chunk size and fixed versus.
variable-size chunking on deduplication for a set of
disk images including Ubuntu Server 6.10, 7.04, 7.10
and 8.04. In each group of two bars, the left bar
measures fixed-size chunking and the right bar indi-
cates variable-size chunking. The graph shows that
smaller chunk sizes result in more effective dedupli-
cation.

Ubuntu 6.10 and Ubuntu 8.04. Fedora89 is deduplicated
against Fedora 8 and Fedora 9, while Fedora79 is dedupli-
cated against Fedora 7 and Fedora 9. Deduplication pat-
terns between consecutive and non-consecutive releases of a
single distribution appear similar, and deduplication is only
slightly less effective when skipping a release. This experi-
ment shows that, when a mature operating system such as
Ubuntu updates its major version, most of the data, e. g.,
base system or software architecture, remains unchanged.
Another interesting point from Figure 8 is that variable-size
chunking does much better on Fedora than does fixed-size
chunking, in large part because it is able to convert unique
blocks into inter-intra shared blocks. We do not know why
this is; however, it is one of the only cases in which variable-
size chunking significantly outperforms fixed size chunking
in our experiments, confirming that deduplication for VMs
should use fixed-size chunking rather than adding the com-
plexity of variable-size chunking.

Figure 8: Deduplication on different releases of a
single Linux distribution. The left bar in each pair
is fixed-size chunking and right bar is variable-size
chunking; chunk size is 512 B. Consecutive releases
only have slightly lower deduplication ratio than
non-consecutive releases.

Figure 9: Locale versions (variable-size chunking,
chunk size 512 B). The left bar in each pair only mea-
sures the English version and the right bar measures
both English and French versions. Storing different
locale versions of same distribution produces high
deduplication.

Figure 9 shows the impact of OS locale upon dedupli-
cation. We deduplicated English and French versions of
Ubuntu Server 8.04 and Fedora 9 separately; the only dif-
ferences between the two versions were a few files relating
to software interfaces and keyboard layouts. As the figure
shows, deduplicating the French version of each OS against
its English version adds few stored chunks, indicating that
changing the localization of an operating system introduces
very few unique blocks.

We next evaluated the effect of deduplicating Linux ver-
sions that derive from a common root. Ubuntu and Knop-
pix are both based on Debian, and Fedora, CentOS, and
Mandriva descend from Red Hat Linux. The result, shown
in Figure 10, is surprising: despite their common lineage,
Linux versions derived from a single root do not deduplicate
well against each other. While mature releases do not change
much, as Figure 8 showed, there are significant changes when
a new Linux distribution “forks off.” Thus, it is necessary to
consider these distributions as distinct ones when consider-
ing deduplication effectiveness.

We next evaluated the effects of varying the operating sys-
tem while keeping the purpose of the distribution—in this

Figure 10: Distribution lineage. Debian series com-
prises Debian, Ubuntu and Knoppix. Red Hat series
comprises Fedora, CentOS and Mandriva. Variable-
size chunking, chunk size 512 B. Despite the common
lineages, there is a relatively low level of deduplica-
tion.

Figure 11: Deduplication of Web appliance VMs
(variable-size chunking, chunk size 512 B). AMP
stands for Apache, MySQL and PHP. Since the
deduplication ratios for both cases are low when zero
chunks are excluded, we can conclude that diverse
operating systems with similar goals do not have
many identical chunks of code.

case, serving Web pages—constant. We built a chunk store
from disk images of DragonflyBSD, NetBSD and OpenBSD
with Apache, MySQL, PHP and all dependent packages, as
described in Section 4.3. We then added similar configura-
tions of CentOS, Gentoo and Ubuntu into the chunk store;
the results are shown in Figure 11. Excluding the large num-
ber of zero chunks, the deduplication ratios are not high,
showing that the common purpose of the systems does not
improve the deduplication ratio. While it may appear that
diversifying the chunk store with Linux distributions helps,
this is an illusion caused by the large number of zero chunks;
the levels of sharing remain low.

The choice of virtual machine monitor (VMM) does not
significantly change the virtual disk image, as Figure 12
shows. The same virtual machine, Ubuntu Server 8.04.1,
on VirtualBox 2.0 and VMware 2.0 deduplicates extremely
well, saving about half of the space, as long as variable-size
chunking is used. The large variation in deduplication effec-
tiveness for fixed-size chunking is due to different offsets in
the disk image for the actual disk blocks (the first part of the
file is occupied by the VMM-specific header). Since the off-
set of the actual virtual disk data in the two disk images files
have the same value modulo 512 but not modulo 1024, fixed-
size chunking is only effective for 512 B chunks. Figure 12b

(a) Ubuntu Server 8.04.1 on VMware and Virtual-
Box (sparse disk image, 4GB maximum)

(b) Ubuntu Server 8.04.1 on VMware and Virtual-
Box (flat disk image, preallocate 4GB space)

Figure 12: Virtual machines created by different
VMMs deduplicate well. The bar on the left mea-
sures fixed-size chunking, and the right-hand bar
measures variable-size chunking.

shows that, not surprisingly, preallocated disk images con-
tain a lot of zeros. While most VMMs provide support for
sparse images, it may be useful to push this functionality
from the VMM into the file system if other deduplication is
also implemented there.

4.3 Impact of Package Management
Users of modern Unix-like operating systems can mod-

ify their functionality by installing and removing software
packages as well as by storing user-related data. In this
section, we experimented with the impact on deduplication
effectiveness of adding and removing packages. The pack-
ages used in the experiments are described in Table 4; all
experiments were conducted on a fresh Ubuntu Server 8.04
and CentOS 5.2 installation, which use aptitude and yum,
respectively, for package management. Table 3 lists the sizes
of the VMs and the packages.

Figure 13 shows the deduplication effectiveness for dif-
ferent sets of disk images with differing installation orders.
Deduplication tests on these images show two important
facts. First, installation order is relatively unimportant for
deduplication; all cases have very high deduplication ratios,
indicating that each disk image in a pair is nearly identi-
cal to the other. Second, increasing the number of packages
installed reduces the level of deduplication but, again, instal-
lation order is relatively unimportant. This is an important
finding for hosting centers; it shows that hosting centers can
allow users to install their own packages without fear that
it will negatively impact the effectiveness of deduplication.
Again, this shows that it is not necessary to base disk images

(a) Package set 1. Some packages only have a deb version or an rpm version.

Index Package name Software Application
Ubuntu CentOS detail

1
apache2
apache2-doc

httpd
httpd-manual

Apache 2.2 web server

2
php5
libapache2-mod-
php5

php PHP 5.2.4 language

3
mysql-server
mysql-doc-5.0

mysql-server MySQL Server 5.0 database

4 exim4 exim Exim MTA 4.69 email service

5
mediawiki
php5-gd

mediawiki MediaWiki 1.11.2 wiki

6 vsftpd vsftpd Very Secure FTP 2.0.6 FTP server

7
subversion
libapache2-svn

subversion Subversion 1.4.6 version control system

8 bacula

bacula-client
bacula-console
bacula-director
bacula-storage

Bacula 2.2.8 backup

9 rpm - RPM 4.4.2.1 package manager

(b) Package set 2

Index Package name Software detail Application area

1
lighttpd

lighttpd-doc
lighttpd 1.4.19 Web Server

2 rails Ruby on Rails 2.0.2 Language

3
postgresql

postgresql-contrib
postgresql-doc

PostgreSQL 8.3.1 database

4 postfix Postfix 2.5.1 Email service
5 python-moinmoin Moin Moin 1.5.8 Wiki Application
6 cupsys CUPS 1.3.7 Print Server

7
cvs

xinetd
CVS 1.12.13 Version Control System

8 backuppc BackupPC 3.0.0 Backup
9 yum Yum 2.4.0 Package Management

Table 4: Two package sets.

Name Image Packages
size Size # Before # After

Ubuntu, package set 1, asc, instance1 879 332 255 391
Ubuntu, package set 1, asc instance 2 883 336 255 391

Ubuntu, package set 1, desc 885 338 255 392
Ubuntu, package set 2, asc 873 326 255 397
Ubuntu, package set 2, desc 867 320 255 402

Ubuntu, remove no dependency 885 - 391 377
Ubuntu, remove all dependencies 881 - 391 256

CentOS, package set 1, asc 1435 387 359 443
Fedora, package set 1, asc 1307 405 194 306

Table 3: Package installation and removal sets. “asc”
and “desc” refer to the order in which packages are
installed. Image size is post-installation / removal.
All sizes are in megabytes; the “before” and “after”
columns reflect the number of installed packages be-
fore and after the installation / removal action.

on a “gold” image; it suffices to use deduplication to detect
identical disk blocks in the images.

When we calculated the deduplication ratio for the sec-
ond case, we found that the amount of newly introduced
unique data is far less than the absolute size of the package
sets. Although the two sets have no package in common,
they are designed to be in same application areas, making
corresponding packages likely to share dependencies. The
dependent packages outnumber the listed packages, allow-
ing the potential of high deduplication; moreover, the final
package counts of the two package sets are approximately

Figure 13: Differing package installation orders. p1a
denotes package set 1, ascending order, and others
follow the same naming rule. Variable-size chunk-
ing, chunk size 512 B. Different package installation
orders generate nearly identical disk images.

equal, implying that the dependency package numbers of
them are approximately equal.

We also experimented with installing the same packages
in the same order on different operating systems. The De-
bian distribution uses deb packages and manages them using
aptitude. Red Hat distributions use the RPM package sys-
tem, which uses yum to install and update packages. Some
packages are system related, either with different binary or
different library and dependencies. Figure 14 shows the re-
sult of installing package set 1 on Ubuntu, CentOS and Fe-

Figure 14: Package systems comparison on Ubuntu
Server 8.04 (U), CentOS 5.2, no desktop (C) and
Fedora 9, no desktop (F). Both install package set
1 in ascending order. Variable-size chunking, chunk
size 512 B. Package system’s contribution to dedu-
plication is outweighed by OS heterogeneity.

Figure 15: Package removal orders. Variable-size
chunking, chunk size 512 B. rp denotes removing
only target packages. rr denotes removing target
packages and all dependencies (revert to original).
ori denotes the original disk image before package
installation. Data of the removed packages are not
erased from disk image, which still resemble the im-
age with the installed packages.

dora, revealing two points. First, by installing the same
set of packages, the deduplication ratio for different package
systems drops. This is not surprising—the binary data for
exactly the same software packages in deb and rpm format
are different. Second, the deduplication ratio for the same
package system also drops. This indicates software packages
are primarily OS dependent, not package system dependent.
The conclusion is that packaging system has little effect on
deduplication ratio, particularly when compared to the di-
versity of the underlying operating systems.

The final factor we examined was the effect of remov-
ing packages; we compared the resulting disk images with
the original and dirty disk images from earlier experiments.
“Removing”was done by executing the apt-get purge com-
mand; as a result, the package name is removed from the
list generated by dpkg --get-selections. We can see from
Figure 15 that, as expected, removed packages are not ac-
tually wiped off the disk; rather, the files are marked as
deleted. This is evident from the high deduplication ratio
between the installed and removed images and lower ratio
for the other two pairs. We can also see that the removal
order is relatively unimportant as well. In order to preserve
a high deduplication ratio, there should be as little differ-

Method Size

tar+gzip, level 9 21152781050 (19.7 GB)
7-zip, level 9 15008385189 (14.0 GB)

var, chunk size 512B, level 9 29664832343 (27.6 GB)
var, chunk size 4KB, level 9 23994815029 (22.3 GB)

Table 5: Compression parameters.

Figure 16: Chunk-wise compression. Variable-size
chunking, chunk size 512 B except the rightmost bar
for 4 KB. Chunk-wise compression is effective but
limited by small window size.

ence in package installation as possible because it is only
package installation, not removal, that alters the disk image
significantly. It is a good idea to leave all dependencies (or-
phan or not) installed rather than removed because the file
system will allocate different regions for these dependencies
when reinstalling them. Moreover, on a deduplicated sys-
tem, unused packages require no additional space, so there
is no reason to remove them.

4.4 Chunk Compression
In this section, we discuss the impact of compressing chunks

on space reduction. We employed the zlib compression
method, using the DEFLATE algorithm [10]), which is es-
sentially the same as that used in Linux’s zip and gzip
code. As a good comparison group, we used 7-zip (LZMA
algorithm) to archive and compress the original disk images,
because various benchmarks [7, 15] have shown that 7-zip
is capable of higher compression than zip. We used the
Linux chunk store from Section 4.1 for our compression ex-
periments. The final sizes of the chunk store are shown in
Table 5.

Figure 16 tells us three things. First, chunk-wise compres-
sion can reduce the size of the stored chunks by 40%. Most of
the saving is contributed by chunks that occur exactly once;
shared chunks are unlikely to be further compressed. Since
we only store a single instance of zero chunks, the saving
from such chunks is no more than 1KB. Second, for 512B
chunks, increasing compression level yields negligible bene-
fit because the 512 B chunks do not fully utilize zip’s 32 KB
sliding window. Third, while larger chunk size yields better
compression, this effect does not counteract the lower dedu-
plication ratio generated by using larger chunks, and may
deteriorates real-time performance as spending more time
on decompression.

5. FUTUREWORK
Our experiments have shown which factors influence the

amount of deduplication available when deduplicating VM
disk images, but they do not address the issue of locality
in deduplication. We believe that deduplication in VM disk
images will exhibit both temporal and spatial locality be-
cause similar files in different disk images will contain many
similar chunks in the same order. We are currently working
to evaluate the amount of locality available in disk images.
If there is significant locality, we can improve deduplication
performance by co-locating nearby chunks from one disk im-
age, since those chunks will likely be near one another in
other disk images as well.

Another important factor for deduplication is user related
data. While all of the VMs in our experiments were not
used by real users, involving user data in VMs may impact
deduplication ratios [18, 19]. Different results may be dis-
covered when identical, homogeneous or heterogeneous VMs
are used and deduplicated.

Issues such as privacy and security can be important for
virtual machines, particularly when a hosting center con-
tains thousands of disk images. Thus, we are investigating
the use of secure deduplication [22] to combine encryption
with deduplication for virtual machines. Doing so promises
to provide not only privacy, but also better security since
it will be more difficult for an intruder from system A to
compromise encrypted chunks from system B.

We have not integrated deduplication into a VMM; how-
ever we plan to modify QEMU [5] or Xen [4] to support such
functionality. In addition to performance measurements, we
hope to test whether flat disk images and sparse disk im-
ages perform similarly under deduplication; if, as we expect,
they do exhibit similar performance, it will make the use of
flat disk images more appealing because deduplication elim-
inates the need to optimize for unused, zero-filled sectors.
Performance measurements similar to those on a more effi-
cient file system than the Venti system used by Liguori and
Van Hensbergen [16] will show whether deduplication can
be effectively integrated into a virtual machine monitor.

6. CONCLUSIONS
Deduplication is an efficient approach to reduce storage

demands in environments with large numbers of VM disk
images. As we have shown, deduplication of VM disk im-
ages can save 80% or more of the space required to store the
operating system and application environment; it is particu-
larly effective when disk images correspond to different ver-
sions of a single operating system “lineage,” such as Ubuntu
or Fedora.

We explored the impact of many factors on the effective-
ness of deduplication. We showed that package installation
and language localization have little impact on deduplication
ratio. However, factors such as the base operating system
(BSD versus. Linux) or even the Linux distribution can have
a major impact on deduplication effectiveness. Thus, we rec-
ommend that hosting centers suggest “preferred” operating
system distributions for their users to ensure maximal space
savings. If this preference is followed subsequent user activ-
ity will have little impact on deduplication effectiveness.

We found that, in general, 40% is approximately the high-
est deduplication ratio if no obviously similar VMs are in-
volved. However, while smaller chunk sizes provide better

deduplication, the relative importance of different categories
of sharing is largely unaffected by chunk size. As expected,
chunk-wise compression dramatically reduces chunk store
size, but compression level has little effect on the amount
space saved by chunk compression.

We also noted that fixed-size chunking works very well
for VM disk images, outperforming variable-sized chunking
in some cases, thus confirming earlier findings [19] stated.
In particular, in small chunk stores such as those in the
Ubuntu Server series experiment in Section 4.1, fixed-size
chunking results in better deduplication than variable-size
chunking This is good news for implementers of deduplica-
tion systems, since fixed-size chunking is typically easier to
implement, and performs considerably better.

Surprisingly, the deduplication ratio of different releases
within a given lineage does not depend heavily on whether
the releases are consecutive. We expected to find that, the
further away two releases are, the less effective deduplication
becomes. We suspect that this effect is not seen because
the same parts of the operating system are changed at each
release, while large portions of the operating system remain
unchanged for many releases. We also noted that, while
different releases of a given lineage are similar, large changes
are made in operating systems when they are “forked off”
from existing distributions.

Throughout all of our experiments, we found that the ex-
act effectiveness of deduplication is data-dependent—hardly
surprising, given the techniques that deduplication uses to
reduce the amount of storage consumed by the VM disk
images. However, our conclusions are based on real-world
disk images, not images created for deduplication testing;
thus, we believe that these findings will generalize well to
a wide array of VM disk images. We believe that the re-
sults of our experiments will help guide system implementers
and VM users in their quest to significantly reduce the stor-
age requirements for virtual machine disk images for hosting
centers with large numbers of individually managed virtual
machines.

Acknowledgments
We would like to thank our colleagues in the Storage Systems
Research Center for their input and guidance. This work was
supported in part by funding from Symantec and the UC
MICRO program. Ethan Miller was also supported by the
Department of Energy’s Petascale Data Storage Institute
under award DE-FC02-06ER25768. We are also grateful for
the financial support of the industrial partners of the SSRC.

7. REFERENCES
[1] Annapureddy, S., Freedman, M. J., and

Mazières, D. Shark: Scaling file servers via
cooperative caching. In Proceedings of the 2nd
Symposium on Networked Systems Design and
Implementation (NSDI) (2005), pp. 129–142.

[2] Anonymous. Secure hash standard. FIPS 180-1,
National Institute of Standards and Technology, Apr.
1995.

[3] http://bagside.com/bagvapp/.
[4] Barham, P., Dragovic, B., Fraser, K., Hand, S.,

Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. Xen and the art of virtualization.

In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03) (2003).

[5] Bellard, F. Qemu, a fast and portable dynamic
translator. In ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2005), USENIX Association,
pp. 41–41.

[6] Bhagwat, D., Eshghi, K., and Mehra, P.
Content-based document routing and index
partitioning for scalable similarity-based searches in a
large corpus. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD ’07) (Aug. 2007), pp. 105–112.

[7] Collin, L. A quick benchmark: Gzip vs. Bzip2 vs.
LZMA, 2005.

[8] Cox, L. P., Murray, C. D., and Noble, B. D.
Pastiche: Making backup cheap and easy. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI) (Boston,
MA, Dec. 2002), pp. 285–298.

[9] Daum, M., and Lucks, S. Hash Collisions (The
Poisoned Message Attack) “The Story of Alice and her
Boss”. Presentation at Rump Sessions of Eurocrypt
2005 5 (2005).

[10] Deutsch, P. Deflate compressed data format
specification version 1.3.

[11] Douceur, J. R., Adya, A., Bolosky, W. J.,
Simon, D., and Theimer, M. Reclaiming space from
duplicate files in a serverless distributed file system. In
Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS ’02) (Vienna,
Austria, July 2002), pp. 617–624.

[12] Gupta, D., Lee, S., Vrable, M., Savage, S.,
Snoeren, A. C., Varghese, G., Voelker, G. M.,
and Vahdat, A. Difference Engine: Harnessing
memory redundancy in virtual machines. In
Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI) (Dec.
2008), pp. 309–322.

[13] Henson, V. An analysis of compare-by-hash. In
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems (HotOS-IX) (May 2003).

[14] Hollingsworth, J., and Miller, E. Using
content-derived names for configuration management.
In Proceedings of the 1997 Symposium on Software
Reusability (SSR ’97) (Boston, MA, May 1997),
IEEE, pp. 104–109.

[15] Kingsley G. Morse, J. Compression tools
compared. Linux J. 2005, 137 (2005), 3.

[16] Liguori, A., and Van Hensbergen, E. Experiences
with content addressable storage and virtual disks. In
Proceedings of the First Workshop on I/O
Virtualization (Dec. 2008).

[17] Muthitacharoen, A., Chen, B., and Mazières, D.
A low-bandwidth network file system. In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01) (Oct. 2001), pp. 174–187.

[18] Nath, P., Kozuch, M. A., O’Hallaron, D. R.,
Harkes, J., Satyanarayanan, M., Tolia, N., and
Toups, M. Design tradeoffs in applying content
addressable storage to enterprise-scale systems based

on virtual machines. In Proceedings of the 2006
USENIX Annual Technical Conference (2006).

[19] Policroniades, C., and Pratt, I. Alternatives for
detecting redundancy in storage systems data. In
Proceedings of the 2004 USENIX Annual Technical
Conference (Boston, MA, June 2004), USENIX,
pp. 73–86.

[20] Quinlan, S., and Dorward, S. Venti: A new
approach to archival storage. In Proceedings of the
2002 Conference on File and Storage Technologies
(FAST) (Monterey, California, USA, 2002), USENIX,
pp. 89–101.

[21] Rabin, M. O. Fingerprinting by random polynomials.
Tech. Rep. TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[22] Storer, M. W., Greenan, K. M., Long, D. D. E.,
and Miller, E. L. Secure data deduplication. In
Proceedings of the 2008 ACM Workshop on Storage
Security and Survivability (Oct. 2008).

[23] http://www.thoughtpolice.co.uk/vmware/.
[24] http://www.vmware.com/appliances/.
[25] VMware Inc. Virtual disk format. VMware web site,

http://www.vmware.com/interfaces/vmdk.html, 11
2007.

[26] Wang, X., Yin, Y. L., and Yu, H. Finding collisions
in the full SHA-1. Lecture Notes in Computer Science
3621 (2005), 17–36.

[27] You, L. L. Efficient Archival Data Storage. PhD
thesis, University of California, Santa Cruz, June 2006.
Available as Techncial Report UCSC-SSRC-06-04.

[28] You, L. L., Pollack, K. T., and Long, D. D. E.
Deep Store: An archival storage system architecture.
In Proceedings of the 21st International Conference on
Data Engineering (ICDE ’05) (Tokyo, Japan, Apr.
2005).

[29] Zhu, B., Li, K., and Patterson, H. Avoiding the
disk bottleneck in the Data Domain deduplication file
system. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST) (Feb. 2008).

[30] Ziv, J., and Lempel, A. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory 23, 3 (May 1977), 337–343.

