Scalable Security for Large, High Performance Storage
Systems

Andrew W. Leung
Storage Systems Research Center
University of California, Santa Cruz

aleung@cs.ucsc.edu

ABSTRACT

New designs for petabyte-scale storage systems are now ca-
pable of transferring hundreds of gigabytes of data per sec-
ond, but lack strong security. We propose a scalable and
efficient protocol for security in high performance, object-
based storage systems that reduces protocol overhead and
eliminates bottlenecks, thus increasing performance without
sacrificing security primitives. Our protocol enforces secu-
rity using cryptographically secure capabilities, with three
novel features that make them ideal for high performance
workloads: a scheme for managing coarse grained capabili-
ties, methods for describing client and file groups, and strict
security control through capability lifetime extensions. By
reducing the number of unique capabilities that must be
generated, metadata server load is reduced. Combining
and caching client verifications reduces client latencies and
workload because metadata and data requests are more fre-
quently serviced by cached capabilities. Strict access control
is handled quickly and efficiently through short-lived capa-
bilities and lifetime extensions.

‘We have implemented a prototype of our security protocol
and evaluated its performance and scalability using a high
performance file system workload. Our numbers demon-
strate the ability of our protocol to drastically reduce client
security latency to nearly zero. Additionally, our approach
improves MDS performance considerably, serving over 99%
of all file access requests with cached capabilities. OSD scal-
ability is greatly improved; our solution requires 95 times
fewer capability verifications than previous solutions.

Categories and Subject Descriptors

C.4.5 [Performance of Systems]: Performance attributes;
D.4.3 [Files Systems Management]: Access methods;
D.4.6 [Security and Protection]: Access controls

General Terms

security, performance

Keywords

scalability, capabilities, object-based storage

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SorageSS ' 06, October 30, 2006, Alexandria, Virginia, USA.

Copyright 2006 ACM 1-59593-518-5/06/001055.00.

Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz

elm@cs.ucsc.edu

1. INTRODUCTION

Recent architectures and designs of high performance com-
modity storage subsystems have aimed to improve scalabil-
ity and performance. The object-based storage architec-
ture [6] has facilitated large-scale, high-performance file sys-
tems through powerful storage abstractions and by decou-
pling data control and data access paths.

Current security protocols for object-based storage pro-
vide strong access control but are often unable to sustain
high system performance in the face of demanding work-
loads. Our research group has developed an extremely scal-
able object-based storage system, Ceph [16], capable of man-
aging petabytes of data under high performance workloads.
As a result, traditional object-based security protocols act
as a performance bottleneck and limit the scalability of such
systems.

Object-based security protocols follow a capability model
to manage access control [7]. Unforgeable capabilities are
issued by a cluster of Metadata Servers (MDS) to clients
who are requesting access to specific objects. The clients
then present these capabilities to the Object Storage Devices
(OSDs) when making data I/O requests. Finally, OSDs ver-
ify capability integrity and request permissions before re-
turning data to the clients. Once a capability has been gen-
erated, acquired or verified it may be cached by the MDS,
client or OSD, respectively. Future metadata or data re-
quests that fall under the scope of a cached capability allow
the MDS or OSD to bypass the generation and verification
process, respectively.

Current security protocols issue fine grained capabilities
which only express access rights for a single object and a sin-
gle client. Large-scale storage systems, such as Ceph, have
files which range over thousands of objects. In system such
as these the MDS will have to generate thousands of ca-
pabilities per metadata request. High performance systems
are also prone to hot files where certain files are commonly
accessed by thousands of clients within milliseconds. These
hot files force the MDS to generate thousands of unique ca-
pabilities for each object being accessed by each client in a
short period of time, which causes an extreme performance
penalty.

To ensure integrity OSDs must verify each non-cached
capability when presented with a client data request. This
impacts performance by introducing a computation cost and
a latency to each new data request. Additionally, large
numbers of capabilities have a negative effect on capabil-
ity cache hit ratios. This is due to the constant high flux of
capabilities in and out of the client, MDS and OSD caches.



Therefore, current security protocols result in a generally
high overhead and extreme performance degradation under
heavy workloads.

We present a new security protocol which provides secure
access privileges while sustaining high system performance
and low overhead even in the face of extremely demanding
workloads. Our protocol employs powerful, coarse grained
capabilities with an expressiveness equal to a collection of
many finer grained capabilities. Our capabilities are valid
for variable-sized groups of clients rather than individual
clients. Additionally, our capabilities can range over a num-
ber of files, rather than a single object. To enhance the ex-
pressiveness of our capabilities we employ different methods
of client and file grouping. These grouping methods reduce
the need for the MDS and OSDs to generate and verify ca-
pabilities, respectively. This also aides in capability caching
by reducing the flux of capabilities in the system.

Capability integrity is maintained with public key signa-
tures rather than a keyed hash. A keyed hash requires a
shared secret between the MDS and all, possibly tens or
hundreds of thousands of, OSDs. This introduces a major
security risk as well as complicates key management. Fi-
nally, we adopt a novel revocation strategy which allows
us to quickly revoke access rights from clients without in-
troducing complicated capability management techniques or
impacting system performance.

We have implemented a prototype of our security proto-
col. We evaluated our prototype using a high performance
file system workload. Our performance analysis demon-
strates the ability to significantly reduce, to near zero, client
latencies due to security. Additionally, our results show a
minimal security overhead at the MDS with greater than
99% of all capabilities generations being eliminated. Our
experiments shows the ability to achieve 95 times fewer OSD
capability verifications than previous solutions.

The remainder of this paper is organized as follows. In
Section 2 we discuss background and Section 3 discusses re-
lated work. In Section 4 we discuss coarse grained capabili-
ties and present our security protocol in Section 5. Section 6
gives a description of our capability revocation strategy and
Section 7 provides a performance analysis of our protocol.
We discuss future work in Section 8 and summarize and
conclude in Section 9.

2. BACKGROUND

Several object-based storage systems have already been
released in the commercial market [4, 13, 11]. Our re-
search group has developed a new object-based file system,
Ceph [17], capable of scaling to peta- and exabytes of data

while providing unparalleled performance and reliability. Ceph

achieves scalability by removing file allocations tables and
relying on intelligent object storage devices (OSDs) to dis-
tribute complex data accesses, update serialization, replica-
tion, reliability and recovery. A cluster of Metadata Servers
(MDS) efficiently handles large and frequent metadata ac-
cesses. Large-scale systems, such as Ceph, may contain tens
or hundreds of thousands of OSDs, each of which may con-
tain several disk drives. Additionally, these systems may
have tens or hundreds of thousands of clients.

Figure 1 demonstrates the architecture and security model
for Ceph and other object-based storage systems. The secu-
rity model assumes the MDS is a trusted reference monitor,
OSDs are trusted principals and clients are untrusted prin-

1: open()
4>
MDS
Client < 2: osdIDs, capability
. //
N
r L
=
/
)
//Q&“

Figure 1: The Ceph architecture and security
model. A client who wishes to access a file requests
a capability from the MDS. The MDS returns the
capability and locations of the objects in the file (os-
dIDs). The client presents the capability to an OSD
along with an I/O request. The OSD verifies the
capability and services the request.

cipals. Commonly, the MDS is able to be physically secured
and protected. Though due to the size of large-scale systems,
such as Ceph, it is often infeasible to physically secure each
OSD or client workstation. As a result, OSDs and clients
are extremely vulnerable to attack by intruders.

Ceph is designed for large-scale scientific supercomput-
ing infrastructures. These infrastructures commonly run
parallel scientific applications which require extremely high-
performance metadata and I/O support [15]. These appli-
cations have heavy I/O demands with data accesses of vary-
ing size. Access patterns are extremely bursty with frequent
flash crowds and hot files. This can result in extreme cases
where hundreds of thousands of clients are concurrently ac-
cessing the same small set of files within milliseconds of each
other.

Due to the need for scalable load balancing, Ceph employs
a unique data distribution algorithm, CRUSH (Controlled
Replication Under Scalable Hashing) [17], which efficiently
maps objects to OSDs in a decentralized, pseudo-random
fashion. CRUSH reliably places and replicates objects based
on physical composition and potential sources of failure,
spreading replicas over many failure groups. Data distribu-
tion is controlled by a hierarchical cluster map which rep-
resents the available storage resources and describes device
layout and associated weights. For reliability and load bal-
ancing, objects for a single file are commonly placed across
thousands of OSDs using placement rules which define repli-
cation and placement policies. Additionally, CRUSH effi-
ciently handles changes in the cluster map, such as new or
failed devices, by remapping an optimal fraction of objects
to new storage devices.

An important feature of CRUSH is that it is completely
distributed, meaning any client, MDS or OSD can indepen-
dently calculate the location of any object in the system,
given the cluster map, placement rules and an input « which
defines distinct storage targets. Therefore, when presented
with a file handle, an OSD can easily calculate whether it
contains any objects for that file handle.



3. RELATED WORK

Security often comes at the price of performance and scal-
ability. Previous work has aimed at providing flexible secu-
rity protocols which are often not designed with performance
and scalability in mind, particularly on the level which we
desire. Other solutions which have aimed at improving secu-
rity performance often require sacrificing security primitives.

Many existing protocols use keyed hashes to enforce ca-
pability integrity [3, 5, 12, 1]. This requires a unique shared
secret between the MDS and each OSD. As a result, capa-
bilities may only be valid over a single OSD, since integrity
can only be verified by a single shared key. This approach
requires the MDS to generate many capabilities in systems
in which files may span many OSDs. Therefore, these fine-
grained, per-OSD capabilities presents a bottleneck in high
performance systems which are heavy in metadata and 1/0
requests by requiring the MDS to produce an extremely
large number of capabilities. Additionally, many protocols
issue capabilities at the granularity of a single object [3, 5,
12]. These protocols force the MDS to generate a unique ca-
pability for each object in the file, regardless of whether the
objects reside on the same OSD. This high flux of capabili-
ties in and out of local MDS, OSD, and client caches reduces
overall cache hit ratios which incurs additional computation
time and latencies.

We adopt a solution similar to the solution developed by
Olson and Miller [10], which uses public key signatures to
enforce capability integrity. Though computing a public key
signature is far slower than computing a keyed hash, it al-
lows a single capability to span any number of OSDs as long
as each OSD knows the public key of the MDS. Moreover,
subverting any number of OSDs will not allow an intruder
access to objects on any other OSD since the public key
of the MDS cannot be used to forge capabilities. We will
later show how we take further steps to reduce any overhead
introduced by using public key signatures.

Some solutions employ fine grained capabilities which al-
low the system to bind security and cache coherency by hav-
ing capabilities serve as both distributed locks and access
tokens. Though this eliminates the need for additional syn-
chronization mechanisms, we feel these two concepts are dis-
tinctly unique enough to warrant separation. Incorporating
hard bound synchronization with more loosely bound access
capabilities needlessly limits flexibility. Additionally, appli-
cations are ultimately responsible for managing coherency
though this is not the case for access control. We feel an
efficient solution would be to push synchronization manage-
ment to the OSDs who have more substantial control over
object access.

To improve performance and reduce MDS load, the SCARED

protocol [12] allows clients to grant capabilities which are
restricted subsets of the capabilities that they have already
been granted. Though this alleviates some MDS capability
requests and subsequent capability generations, it fails to
enforce confinement in a system in which clients may not be
trusted or may become compromised.

The protocol presented by Azagury, et al. [3] assumes
the use of an authenticated secure channel, such as IPSec.
Therefore, the protocol allows OSDs to use channel authen-
tication rather than client authentication. Because the pro-
tocol does not do client authentication it suffices for the OSD
to verify that whoever is on the other end of the channel has
a valid capability and knows some special secret. This allows

for easy and simple delegation of capabilities from one client
to another. Though much like SCARED, the performance
benefits of capability delegation are shrouded by resulting
insecurities.

Gobioff [7] introduced the use of batched capabilities to
reduce client latency by contacting the MDS less frequently
and requesting several capabilities per contact. Clients batch
capability requests into a single large request to the MDS.
Though this requires clients to access the MDS less fre-
quently each client must still wait until it has accumulated
enough capability requests to contact the MDS and the MDS
must still generate a unique capability for each request. Ad-
ditionally, batching capability requests guarantees that the
MDS will always have to handle a large number of capability
requests in a short period of time, which negatively impacts
MDS performance.

Gobioff also proposed indirect objects to allow a capabil-
ity to name many objects. An indirect object is an ordered
list of objects which are located on the same OSD. A ca-
pability grants access to a single indirect object which, in
turn, grants access to all objects named in the indirect ob-
ject’s ordered list. This does allow multiple objects to be
named in a single, small sized capability though it only al-
lows a capability to name objects on the same OSD, meaning
the MDS must still generate thousands of capabilities for a
file which spans thousands of OSDs. Moreover, the MDS
must write thousands of indirect object lists when files span
thousands of OSDs. Using CRUSH, our protocol allows each
OSD to deterministically identify all objects it contains for
a file given the file handle.

Aguilera, et al. [1] introduced a capability based proto-
col for block level storage. They propose using capabilities
that specify access over ranges of blocks (extents) or explicit
non-contiguous blocks. Because these capabilities are self-
describing they may result in exceedingly large capabilities
when blocks are not located contiguously on disk. Addition-
ally, these capabilities can only work over a single disk and
thus require the MDS to generate many capabilities for files
which span many disks.

Security in LWF'S [9] also supports coarse grained capabil-
ities. Their solution utilize containers of objects to include
multiple objects into a single capability. Though rather than
allow the MDS to dynamically associate objects with con-
tainers, each object is implicitly bound to a single container.
All objects in a container must share the same access poli-
cies, which makes it difficult to modify the access rights of
a single object and complicates dissociating an object from
a particular container. Additionally, their capabilities do
not explicitly name clients to which the capability applies
meaning they are unable to enforce confinement in systems
in which the network is not fully secured.

Singh, et al. [14] suggested using a trust framework to re-
duce security overhead and increase performance. Their pro-
tocol requires the MDS to monitor and record the correct-
ness of each clients metadata accesses. This allows the MDS
to assign a level of trustworthiness to each client. Clients
are deemed trustworthy when they rarely try and access files
using privileges they do not have. Once a client is deemed
trustworthy the MDS informs the OSDs that they no longer
need to verify capabilities from that client. Though this
approach aides performance by allowing OSDs to skip the
capability verification process for some clients, it introduces
a major security risk. In order for a malicious client to access



Identifier
< 128 bits >
File Handle
B 128 bits -
Type Crlrlllzéer Pii;?é?::t Replicas
i .
2 bits 12bits | 12bis | 8PS

Figure 2: The structure of a capability. The capa-
bility is cryptographically secured with a public key
signature by the MDS. The first field describes the
user or group for whom the capability is valid. The
second field describes the file handles to which the
capability grants access. The type specifies the nam-
ing convention, Ts and T. define the capabilities life-
time and perm specifies the privileges. Cluster Map,
PlacementPolicies, and Replicas are all CRUSH spe-
cific fields.

a restricted object the client must simply 'behave’ for long
enough to gain trust from the MDS. Once it is deemed trust-
worthy it may access any object in the system regardless of
access privileges. Additionally, this protocol only reduces
overhead at the OSDs, allowing the MDS to still act as a
bottleneck.

Olson and Miller [10] proposed a protocol which allows ca-
pabilities to extend over all objects in a file and across OSDs.
Olson’s protocol utilizes a placement algorithm, similar to
CRUSH, which allows OSDs to deterministically identify if
it contains objects for a given file handle. Additionally, this
protocol uses public key signatures rather than keyed hashes
to ensure integrity. Though this protocol is better suited for
large-scale, high performance environments it still incurs a
high overhead. The protocol makes little effort to reduce the
number of expensive public key signatures and verifications
performed at the MDS and OSDs, respectively. Capabili-
ties are issued at a per-client granularity, therefore, hot files
can have a high impact on system performance. Addition-
ally, their protocol does not facilitate a capability revocation

policy.

4. COARSE GRAINED CAPABILITIES

We present a protocol which employs capabilities which
are general enough to grant multiple clients access privileges
to multiple files using a single capability. Doing so reduces
the number of capabilities the MDS must sign and generate,
as well as, the number of capabilities the OSDs must ver-
ify. This reduces client request latencies and load on both
the MDS and OSDs. Issuing fewer capabilities also reduces
churn in client, MDS, and OSD caches, as well as, lessens
network traffic.

High performance applications and workloads often have
very bursty, hot file oriented access patterns. Additionally,
file accesses are often highly correlated, resulting in clients
accessing files in a common pattern. This allows us to en-
capsulate access privileges for many clients and files into a
single capability rather than a capability for each client-file
or client-object pair.

It is important to note, the MDS never issues a coarse
capability which grants any client access privileges to a file
which they should not have access to. Therefore, in a coarse
grained capability, all clients in the capability have access
privilege to all files in the capability according to the systems
reference monitor.

Figure 2 shows the structure and contents of our coarse
grained capability. Two 128 bit fields identify the clients
and files the capability describes. This gives us the ability to
either explicitly name individual clients or files or use more
sophisticated naming techniques, such as hashes, ranges, or
lists.

4.1 Managing Coarse Grained Capabilities

When the MDS is constructing a capability, simply in-
cluding a list of clients or file handles, which may be long,
in a capability can result in extremely large capabilities,
which are inefficient for caching, passing on the network
and encryption. Therefore, coarse grained capabilities con-
tain group and file list identifiers rather than explicit client
or file names. When presented with capabilities during I/O
requests the OSDs need a way to translate these identifiers
into lists of clients and/or files.

To remedy this, we use a method similar to indirect ob-
jects, described by Gobioff [7]. A file, stored in the system,
will contain all identifiers and their associated client or file
list. This identifier to list map file is stored as a normal
file in the system, though it is signed by and may only be
modified by the MDS. To save space locally the OSDs may
want to maintain only a subset cache of all of the lists in the
system.

When an OSD wishes to learn about clients or files asso-
ciated with an identifier it may request the location of the
map file from the MDS. The MDS must authenticate the
OSD before returning the address of the file and a capabil-
ity to access it. Once an OSD knows the location of the file,
it may access lists for every identifier in the system. This
method allows the OSD to query the list without having to
involve the MDS.

In order to create identifiers for client and file lists we
use fixed-size Merkle trees [8], also known as hash trees.
Merkle trees provide flexibility for creating additional, and
appending to, client and file lists. A Merkle tree is a tree of
hashes in which the leaves are hashes of, in our case, client
names or file handles. Each node further up the tree is a
hash of its respective children. The root node of the tree is
a fixed-size hash based on all other hash values in the tree.

Using Merkle trees it is easy to construct new, long lists
of clients or files inexpensively. This will greatly reduce
the cost of updating or adding to client groups or file lists.
When a long list of clients or files needs to be included in a
capability the MDS may simply join already existing Merkle
trees to produce a new root hash. This fixed-size root hash
is included in the capability. Then updating the identifier to
list map involves simply joining several Merkle trees, which
saves both significant space in the identifier to list map and
MDS computation time.

When presented with a capability an OSD will contact the
map file stored in the system which associates the root hash
in the capability with a list of clients or files. This is use-
ful because each branch of a Merkle tree represent another
associated list. This allows the MDS and OSDs to easily cre-



ate, join or disconnect Merkle trees to form dynamic lists of
client names or file handles without heavy re-computation.

Since the OSD may cache only a subset of the map file,
the OSD will need to contact the map file remotely when
presented with a capability containing a root hash it does
not recognize. The OSD will be able to store far more lists in
less space with Merkle trees. Rather than caching a long list
for each new hash value the OSD sees, it can store new hash
values as combinations of other hash values it has already
stored. By being able to compactly store many lists locally,
the OSD greatly increases its chances of an identifier getting
a local cache hit.

Methods for defining optimal group and file list defini-
tions will be largely dependent on the design and semantics
of the system. As a result, we leave the decision of how to
define groups and file lists to the system designers and ad-
ministrators. In the following section we will present some
definitions we feel are useful for achieving descriptive coarse
grained capabilities.

4.2 Defining Groups

We propose two approaches for describing groups of clients
in a coarse grained capability. The first approach uses a rel-
atively static group definition based on UNIX user groups.
UNIX groups provide a descriptive way to define a large, re-
lated set of clients. Also, UNIX groups are relatively static,
requiring few changes once group identities are known.

In UNIX, and therefore in POSIX, all files have permis-
sions for three categories: user, groups and global. If a file is
accessed by any client named in groups then the MDS may
cache and return a single capability granting permissions to
all clients named in groups. Because all clients in groups
have the same access privileges to a file, a single capability
will suffice for the entire group. Any subsequent requests
for that file from any other clients in groups will result in
the cached capability being returned.

If any clients not named in user or groups requests ac-
cess to the file the MDS may cache and return a capability
granting permissions to all clients as specified by the global
permissions. Therefore, the MDS will only have to generate
at most three unique capabilities per file, pending any file
permission changes.

The second approach is to use dynamic groups which are
created on-the-fly. This is based on the notion that files are
accessed in a bursty, hot file oriented fashion and a single
request for a file is often indicative of future requests. These
groups describe, exclusively, the clients who request access
to a file.

As the MDS generates and signs a capability for a file,
it buffers, rather than services, all similar requests for that
file. Once the MDS has returned the capability, it gathers
all buffered requests for a file and includes those clients into
a single capability. While the MDS is generating this new
capability it can likewise buffer any further requests received
for the file. Therefore, the MDS is able to batch all client
requests received during the lengthy capability generation
and signature process into a single capability, greatly reduc-
ing the number of capabilities which need to be generated.
Another important feature is that it does not introduce any
additional latencies since batching is done while the MDS is
busy generating and signing capabilities.

A key tradeoff between the two approaches is that UNIX
groups require a UNIX or POSIX compliant system. This

limits the amount of heterogeneity that can exist amongst
nodes in the system. Also, UNIX groups cannot maintain
a notion of fine-grained access control. Another tradeoff is
on-the-fly groups hinge on the notion that files are accessed
in a bursty pattern. If files are not accessed in such a way
this approach is often unable to encapsulate many clients in
a group. Also, frequently changing groups require the OSDs
to spend more time inquiring about group members.

4.3 Defining Files

We propose a method for including a list of files in a capa-
bility based on a file’s likelihood to be accessed in the near
future. To do this we employ a very accurate prediction
algorithm, Recent Popularity [2].

The Recent Popularity algorithm has strong stability ben-
efits and quickly adapts to changes in accesses. Recent Pop-
ularity stores the k last observed successors to a file. It
selects a possible prediction for the most popular file and if
that selection occurs at least j times then Recent Popularity
offers that selection as a successor prediction.

Accuracy is important for establishing long chains of suc-
cessor files in a capability. For example, suppose it is the
case that accessing file A usually results in an access to file
B, which results in an access to file C' and then an access
to file D. Then C and D are along the causal path of likely
successors of A and should be included in the capability as
such, in addition to B.

5. AHIGH PERFORMANCE SECURITY
PROTOCOL

In this section, we formally introduce our scalable object-
based security protocol.

Notation

We will write A — B : M to signify a message, M going
from principal A to principal B. Unless the channel between
A and B is secured, an attacker may freely eavesdrop the
channel, capture packets, modify packets and replay packets.
When principal A receives a message M, A is unable to make
any assumptions about the freshness of M.

To denote public and private keys for principal A, we will
use KY and K&, respectively. To denote a shared secret key
between principals A and B, we will use Kap. We will write
encryption of message M with A’s public key as {M}KY.
Encryption of message M with A’s public key results in M
being readable only to A. The notation {M}Kap encrypts
message M with symmetric key Kap which makes M un-
readable to anyone besides A or B, as well as, authenticates
either principal A or B.

The notation (M)Kf’ denotes message M being signed by
the private key of A. The signature can be verified with A’s
public key, KY. To denote user U making a request through
client workstation C we simply use C.

Assumptions

We assume encryption and signature algorithms are suffi-
ciently hard to break. Additionally, we assume private keys
will be kept secret by their respective principals and that
public keys are well known to all principals in the system.
We assume the MDS properly serves metadata to clients.
Additionally, we assume the MDS acts as a trusted reference
monitor for granting access control through capabilities. We



also assume the OSDs are trusted principals and properly
serve data to clients. We assume the clients are untrusted
principals and that both the clients and OSDs are vulnerable
to attack.

Protocol

Message exchanges:

C—-M . C,request ticket 0.1
M—C : {T}Kewm 0.2
C—-M : C, {open(path, mode)} Kcum 0.3
M—C {C}Kem 0.4

. AKe o YK Do
C— D(H,3) {7, €, read(bno, i, H), T1 } K. p (1.

D(H,i) — C : {Th,data} K¢ p(m,i)

where T = (C, Kg,KOyT;TQKIIEI
e = (G, L,type, perm,Ts, T.) K1y
G = hash(S1,S2)
L = hash(Ss3,S4)
Kepmy = {{Ko}Kp}KE

This protocol employs a secure channel between the client
and MDS using shared secret, Kcn. In message 1, the
client first requests a ticket which is used to authenticate
the client to each OSD. The ticket contains the clients id,
C, the clients public key, KZ, an initialization key, Ko, and
a ticket lifetime, T to T.. The ticket is signed by the MDS
and returned in message 2.

Though generating and signing the ticket may be expen-
sive, the MDS need only generate a ticket once for each client
in the system. Assuming tickets have a relatively long life-
time, the ticket will be refreshed infrequently and message 1
and message 2 will not often occur.

In message 3, the client requests a capability from the
MDS for file path. The MDS identifies the appropriate
clients and files to include in the capability using the meth-
ods previously discussed. The MDS then generates the root
hashes G and L which are the group and file identifiers, re-
spectively. Both G and L are hashes of the two Merkle sub-
trees S1 and S2 and Ss and Sy, respectively. These subtrees
are constructs inherent to building Merkle trees and may or
may not already be known to the OSD. The type field of the
capability defines how group and file list identifiers are to be
interpreted and therefore its semantic meaning is relative to
the specific system. The perm field describes the permis-
sions granted by the capability. The capabilities lifetime is
Ts to Te. The capability is signed by the MDS and returned
in message 4.

CRUSH yields the identifier of the OSD to contact for the
i*" object of file H, represented by D(H, 7). Using the initial-
ization key, the OSD’s public key and the clients private key,
the client is able to generate a session key for secure com-
munication with each OSD. In message 5, the client sends
the session key, K¢ p(m,i), to the OSD encrypted with the
OSD’s public key. Once a secure session is established with
the OSD, the first part of message 5 will not be necessary.
Because the session key is derived from information con-
tained in the ticket and unchanging public and private keys,
the secure channel between the client may be used until the
client is issued a new ticket. Therefore, though generating a
session key and establishing a secure channel may be expen-

sive, it will happen no more frequently than ticket renewal,
which is seldom.

In the second part of message 5 the client presents the
OSD with the ticket, the capability, the data request and
a timestamp to prevent replay of the message. The data
request specifies the block bno of the object i of file H. This
is all encrypted using the per-OSD session key.

If the capability, in message 5, names a client then the
OSD verifies that the client name matches the ticket. If
the capability names a group identifier then the OSD veri-
fies that the client named in the ticket exists in the group
associated with the identifier. The OSD does so by first
checking for a list associated with the group identifier in it’s
local cache. If no such list exists the OSD must consult the
identifier to list map. Because this list is simply a file in the
system the OSD must contact the MDS for access to the
file in a manner very similar to the protocol specified above.
For this reason, we leave its description out of the message
exchanges above. Once the OSD has verified that the client
in the ticket is the client in the capability or is in the group
associated with the identifier it may begin resolving the ca-
pability’s file handle or file identifier.

Matching file identifiers to lists is very similar to the group
matching process just described, thus we will omit its de-
scription. Once the OSD has verified the capability names
the file handle specified in the data request it resolves the
file handle to a series of object ids using CRUSH. The OSD
then returns data for object ¢ in message 6. The returned
data also includes a timestamp and is encrypted with the
session key.

5.1 Security Analysis

Here we asses the risks certain attacks pose on our pro-
tocol and discuss any security implications coarse grained
capabilities may introduce.

Risks

If an attacker were to subvert a client workstation, then
the attacker would obtain Koy and K f. This allows the
attacker to impersonate the user, U, associated with C, to
the MDS and OSDs. The attacker would be able to gain
access to all objects that U could access. Unless Ko is
occasionally refreshed to preserve perfect forward secrecy,
an attacker would be able to view all previous messages
between the client and the MDS, as well as, all previous
messages between the client and OSDs.

If an attacker were to subvert an OSD, then the attacker
would obtain K7 for that OSD. Additionally, an attacker
would obtain K¢, p(m,q) for all clients who have recently con-
tacted the OSD. The attacker would then be able to imper-
sonate the OSD to the MDS and any client. Additionally,
the attacker would have access to all previous messages be-
tween all clients and that OSD. If the attacker fully subverts
the OSD, rather than just compromising secret or private
keys, the attacker may be able to view, modify or delete
any objects located on that OSD.

Security of Coarse Grained Capabilities

Here we show, informally through contradiction, that coarse
grained capabilities preserve fundamental security primitives.

Assume it is possible for the protocol described above to
grant an attacker access to a restricted file through coarse
grained capabilities which yield access to multiple files. An



attacker may exploit these capabilities by obtaining a ca-
pability in which it is named and trying to use it to access
restricted files. This amounts to the attacker choosing a file
handle and querying an OSD, using the obtained capability,
to see if the capability grants access to that file. An attacker
will gain access to the file if and only if the OSD verifies that
the capability indeed permits access to the file. Because ca-
pabilities are unforgeable, the MDS must have generated
the capability. Therefore, the previous attack is equivalent
to the attacker querying the MDS for access to the chosen
file in a system which names a single file per capability. In
order for the attacker to gain access to a restricted file in
the second system the MDS must grant the attacker a ca-
pability which provides access to a restricted file. Because
the MDS is assumed to be a trusted reference monitor, with
an ACL at the granularity of files, the MDS will never grant
capabilities providing access to restricted files. Therefore,
the MDS will never issue a coarse grained capability which
grants access to a restricted file.

Again, assume it is possible for the protocol described
above to grant an attacker access to a restricted file through
coarse grained capabilities which provide multiple clients ac-
cess to a file. An attacker can exploit these coarse grained
capabilities by obtaining a capability in which it is named
and delegating the capability to other clients whom are ac-
complices. These accomplices may attempt to access the file
by querying an OSD for access to the file. Again, capabili-
ties are unforgeable and must be generated by the MDS. An
accomplice will gain access to the file if and only if the OSD
verifies that the capability indeed permits the accomplice
access to the file. Therefore, the previous attack is equiva-
lent to the accomplice querying the MDS for a capability to
access the file in a system where capabilities describe access
for only a single client. In order for the accomplice to access
the file in the second system the MDS must issue a capa-
bility that grants the accomplice access to the file. Because
the MDS is a trusted reference monitor, with an ACL at
the granularity of clients, the MDS will never grant capa-
bilities providing unauthorized clients access to a restricted
file. Therefore, the MDS will never issue a coarse grained
capability which grants an unauthorized client access to a
restricted file.

6. CAPABILITY REVOCATION

It is very difficult to enforce any strict methods of capa-
bility revocation when capabilities may be distributed and
shared amongst thousands of clients and OSDs. If access
permissions for a file change it may affect a capability owned
by many clients and cached at many OSDs. The same ap-
plies if a client has its access rights modified. As a result, we
take a novel approach to capability revocation and simply
use short-lived capabilities. This limits the possible window
of vulnerability to the lifetime of the capability.

As a corollary, capabilities will expire quicker and clients
will need to request additional capabilities, burdening both
the MDS and OSDs. To resolve this we implement capability
lifetime extensions. An extension is a document, generated
and signed by the MDS, stating a new, extended expiration
time for a capability.

When a client notices a capability is nearing its expiration
the client may request a lifetime extension from the MDS.
Assuming the client is still authorized for the capability, the
MDS will generate, cache, and return this extension to the

client. The client then presents this extension to the OSDs,
who verify and cache it. Capabilities which are held by
many clients will cause the MDS to receive multiple exten-
sion requests for the same capability. By caching capability
extensions the MDS only needs to generate a single exten-
sion for all of the clients who hold a capability.

The MDS can also batch extension requests for different
capabilities and return clients an extension which extends
the lifetime of many capabilities. This is useful when the
MDS receives many extension requests, for different capa-
bilities, in a short period of time. Because extensions simply
name capabilities and a new expiration time, there is no rea-
son the MDS cannot name multiple capabilities in a single
extension. This allows the MDS to reduce the number of
lifetime extensions it needs to generate and sign, as well as,
the number of extension verifications that the OSDs need to
perform.

7. PERFORMANCE EVALUATION

We evaluate three different criteria which demonstrate the
effectiveness of our protocol to efficiently handle large-scale
systems and high performance workloads. First, we analyze
how effective our protocol is at reducing client latency. Sec-
ond, we examine the ability of our protocol to increase MDS
scalability and reduce requests. Finally, we gauge how our
protocol aides OSD capability verification.

We developed a prototype implementation of our protocol.
We used UNIX groups as the basis for group establishment
and used Recent Popularity to predict file successors. We
chose UNIX groups because our benchmark was a POSIX
compliant UNIX file system trace and thus UNIX groups
reflect real file system semantics. We selected Recent Pop-
ularity because of its ability to produce extremely accurate
predictions. We used three and six as the Recent Popularity
parameters j and k, respectively.

We implemented versions of our protocol which use only
groups without file prediction and only file prediction with-
out groups. We also implemented a protocol which does not
use groups or file prediction which will serve as our baseline
comparison. We also developed a protocol which issues ca-
pabilities at the granularity of a single object and individual
clients for additional comparison. For this we used a simple
and reserved algorithm for mapping files to objects resulting
in files containing a relatively limited number of objects.

A high performance object-based, cluster file system trace
from Lawrence Livermore National Lab was used as our
workload benchmark. The workload consisted of 256 clients
each running the same high performance simulation appli-
cation. Each client issues approximately 90 MDS requests
and more than 1,800 I/O requests.

Our experiments were conducted using three separate ma-
chines. The client and OSD machines were both Dell Op-
tiPlex SX270s with 2.80 GHz Intel Pentium 4 CPUs. The
MDS was a Dell OptiPlex SX280 with a 3.2 GHz Intel Pen-
tium 4. All three machines were connected through a high
speed LAN, and each had one gigabyte of main memory and
ran Fedora Core 3 Linux, version 2.6.12-1.

7.1 Latency Analysis

We ran the high performance benchmark on our prototype
and measured the latency of each client open() request sent
to the MDS. We compared this to the same workload run
over our protocol when using either group or file prediction



N
o
S

4 Baseline O Grouping

% Prediction " Grouping / prediction

[N
a1
1

g;@mn@o@u@xAAmﬁo@g @A BA AA AAAA AAAAAAK AA A

Latency (ms)
=
o

al

O
O O 0 O O O O

O O O O
—— - —— S
0 100 200 300 400 500
Request number

o

Figure 3: The latency for the first 500 open() re-
quests made to the MDS for protocols with groups
and file prediction, just groups, just file prediction
and no groups or file prediction.

capabilities only, as well as, a protocol which issues capabil-
ities at the granularity of single files and individual clients.
This identifies the role each part of the protocol plays in
achieving scalability. We also tested a protocol at the gran-
ularity of objects however this results in a much larger vol-
ume of total requests and does not make for a good direct
comparison. A client side capability cache was utilized for
each client in the experiment.

Figure 3 shows the latency breakdown for client open()
requests to the MDS. Latencies are generally either zero
or approximately six to seven milliseconds. Zero latency
requests generally translates to cache hits at the MDS. Re-
quests with greater latencies are generally misses which force
the MDS to generate a capability and do a lengthy signature
operation per miss.

Our protocol, using both groups and file prediction, al-
most immediately drops to zero latency per request. This
is because our prediction algorithm is quickly able to accu-
rately predict future file accesses and include them in the
capability. As a result, all requests from a client, after the
first, will result in the request being serviced by the MDS
cache. With UNIX groups, clients only experience this sin-
gle latency when they happen not to share a UNIX group
with any client who has previously sent a request to the
MDS.

The group-only and file prediction-only protocols also per-
form extremely well, though not as well as when they were
used in conjunction. In the group only protocol, clients only
experience latencies when they are the first member of any
of their UNIX groups to make a MDS request. Though these
clients will experience a latency for the duration of their re-
quests, all subsequent clients in the same group will have
zero latency requests.

Our protocol, using both groups and file prediction, al-
most immediately drops to zero latency per request. This
is because our prediction algorithm is quickly able to accu-
rately predict files and include them in the capability. As a
result, all requests from a client, after the first, will result in
the request being serviced by the MDS cache. With UNIX
groups, clients only experience this single latency when they
happen not to share a UNIX group with any client who has
previously sent a request to the MDS.

The group only and file prediction only protocols also per-
form extremely well, though not as good as when they were

50000 45833

40000 -
m
£ 30000 A
>
Q
c
9 20000
T
)

10000 +

58 62 1466 1641
0 T T T T T

Prediction/ Group Prediction Baseline Baseline
Group (File (Object
Level) Level)

Figure 4: The aggregate client latency experienced
for a hot file. Each client issued slightly more than
7,500 open() requests, except for the object level
protocol which issued more than 110,000 requests.

used in conjunction. In the group only protocol, clients only
experience latencies when they are the first member of any
of their UNIX groups to make a MDS request. Though these
clients will experience a latency for the duration of their re-
quests, all subsequent clients in the same group will have
zero latency requests.

In the prediction only protocol, clients experience a la-
tency on every MDS request until the MDS is able to con-
fidently make file access predictions following the requests
of j clients. Afterwards, every client’s first MDS request
results in a latency while all subsequent requests do not.

The baseline protocol without groups or file prediction
performs radically worse than the previous protocols. Us-
ing the baseline protocol, every client request has a latency.
This is because all requests that could be serviced by the
MDS cache are instead serviced by the client’s local cache.
As a result, all requests that cannot be fulfilled by the
client’s local cache also cannot be serviced by a capability
in the MDS cache.

We compared our protocol to a traditional protocol at the
object granularity. This data is not reflected in our numbers
because it requires almost 80,000 additional MDS requests
making it difficult to compare on the same scale. Though
because this protocol utilizes keyed hashes rather than dig-
ital signatures, latencies are generally only several hundred
microseconds rather than five or six milliseconds. By com-
parison our protocols aggregate client latency was 2,575 ms
on average while aggregate latency for the traditional object
protocol was 822,476 ms.

Figure 4 shows the aggregate client latency to service a
hot file scenario that consisted of more than 7,500 open()
requests for a single file from 256 clients. Our protocol re-
quired a minuscule 58 ms to service all client requests. This
means our protocol produced client latencies which were on
average approximately 7 us. The group only protocol also
performed extremely well, servicing all of the clients in 62
ms.

The file prediction only protocol did not perform nearly
as well, requiring 1,466 ms to service all clients. This is
due to the fact that the hot file scenario in our experiment
only issued requests for a single file, thereby negating any
positive effects of a file prediction protocol. The baseline



— Group/Multiple File
————— Multiple File
""""" Group
————— Baseline
T T r
0 50 100 150 200 250

Request number

Figure 5: The percentage of open() requests received
by the MDS which were serviced by capabilities in
the MDS cache.

protocol without groups or file prediction performed about
the same, taking 1,641 ms to service all clients.

When the object level protocol was tested it performed
much worse, taking 45,831 ms to service all of the client
requests. Though on average client requests only took 400
us to service, the sheer number of requests resulted in an
extremely high aggregate latency.

7.2 MDS Scalability and Load Reduction

Figure 5 shows the MDS capability cache hit percentages
for all requests issued by the workload. Our protocol per-
formed exceptionally well, having serviced 48% of the ca-
pabilities from the cache after only 1% of the workload has
completed. By the time 7% of the workload has completed
90% of the MDS requests have been serviced by the cache.
In total, of all of the approximately 5,600 requests received,
only 55 were not serviced by capabilities in the MDS cache.

The group only and prediction only protocols also both
performed extremely well, though neither protocol climbs
in cache hit percentage as fast as our combined protocol.
Each serves approximately 95% of all requests from the MDS
capability cache. The file prediction algorithm has served
75% of all requests from the capability cache with only 5%
of the total workload run. The group protocol reaches the
same mark after 16% of the workload has completed.

The baseline protocol, which does not employ groups or
file prediction performs poorly, not producing a single cache
hit at the MDS. This is due to the need for exclusiveness
between the MDS cache and a client’s cache.

Figure 6 demonstrates the effectiveness of the client’s cache
at reducing MDS load for object and file level protocols. The
client’s cache is able to absorb about 75% of all of the client’s
requests, for both object and file level protocols, under our
benchmark.

Though the percentage of requests served by the client’s
cache is the same across the two protocols, the difference in
the absolute number of requests sent to the MDS is quite
daunting. The file level protocol issues about 5,600 requests
to the MDS while the object level protocol issues about
109,000. Therefore, despite the fact that a keyed hash in-
tegrity computation is faster than a public key signature, far
more keyed hash computations are being performed which
rapidly negates the performance difference.

450000 - 421632
400000 +
350000
o 300000
= 250000 -
§_ 200000 -
& 150000 + 109312
Q 100000 -

50000 4 5606 22949

0
T T

I I
File level File level Object levelObject level
cache on cache off cache on cache off

equests

Figure 6: The effectiveness of the client cache and
file level protocols at reducing the requests sent to
the MDS.

K 3418
£ 3500

£ 3000

g 2500

é 2000

© 1500

(8]

£ 1000 —

€ 500 - 37 133 %01

3 o0 -

n I I I I
o Prediction/ Group PredictionBaseline

Group

Figure 7: The aggregate number of verifications
done by the OSD for more than half a million I/Os.

7.3 OSD Scalability

We ran the high performance benchmark on our proto-
type and measured the number of capability verifications
the OSD was forced to do. We compared this to the same
workload using our baseline protocol without group or file
prediction capabilities, as well as, group only and prediction
only protocols.

Figure 7 shows the aggregate number of verifications done
by the OSD. Our protocol requires only 37 OSD verifications
for over a half a million I/Os. However, this is greatly due
to the fact that the workload issued I/Os to a very small set
of files relative to the total number of I/Os. Nonetheless,
our protocol drastically out performs the baseline protocol
without groups or prediction.

The benchmark produced 133 verifications and 301 veri-
fications with the group only and prediction only protocols,
respectively. The baseline protocol required 3,418 OSD ver-
ifications. This is nearly 95% more capability verifications
than is required with our protocol.

8. FUTURE WORK

The protocol we developed aims to reduce the time spent
generating, signing and verifying capabilities. Unfortunately,
some of our solutions incur both a space and time overhead.
For example, a successor lookup table must contain n + 3
rows, where n is the Recent Popularity parameter for a rea-
sonably sized subset of all files in the system. In a large-scale
system this table has the potential to become exceedingly



large. This can waste MDS memory and make the table dif-
ficult to search. Though we believe this approach is sophis-
ticated in its ability to generate accurate successor chains,
we would like to know how it fares against other approaches.

Also, protocols which use fine-grained capabilities are also
able to use capabilities as a way to enforce cache coherency.
Our coarse grained capabilities will not be able to make such
an enforcement. Though Ceph uses object-range locking
to maintain cache coherency, we must factor this cost into
the total cost of our coarse-grained capability protocol. We
would like to quantify the costs of using an additional object-
range locking scheme in addition to our security protocol.

We feel our protocol is well suited for some POSIX exten-
sions currently being examined, particularly group opens,
shared file descriptors, and group locking. We would like to
examine our protocol in these contexts, both to understand
our own protocols performance and to provide insight into
the value of these extensions. We believe this will aide in
both the development of our protocol as well as the propa-
gation of these extensions into everyday use.

9. CONCLUSIONS

We presented a new scalable security protocol for large,
high performance storage systems. In contrast to previous
work, our protocol can handle both extremely large systems
and high demand workloads. By extending the granularity
of capabilities we are able to make them far more expressive.
Through groups and prediction we take advantage of this ex-
pressiveness to reduce many of the MDS and OSD capability
generation and verification scenarios. This in turn, reduces
both computation times and latencies. To enforce revoca-
tion of access privileges we utilized short-lived capabilities
and allowed for efficient capability lifetime extension.

We implemented a prototype of our protocol and evalu-
ated its performance and scalability. We found we were able
to quickly reduce client latencies for requests to near zero.
The MDS managed to service more than 99% of all requests
using capabilities from its cache. Our prototype required
95 times fewer OSD capability verifications than previous
solutions.

Hence, we believe our protocol is a practical and efficient
way to achieve security in large, high performance storage
systems. Furthermore, we feel our protocol offers perfor-
mance benefits to other smaller, block-based systems as well,
liberating these systems from many of their own security
protocol performance bottlenecks.

Acknowledgments

We would like to thank our Lawrence Livermore National
Laboratory, Los Alamos National Laboratory, and Sandia
National Laboratory both for sponsoring this work and for
providing valuable mentoring. We would also like to thank
Martin Abadi and all of the members of the Storage Systems
Research Center, whose support and advice helped guide us
through this work.

10. REFERENCES

[1] AGUILERA, M. K., J1, M., LILLIBRIDGE, M.,
MacCorMICK, J., OERTLI, E., ANDERSEN, D.,
BurrROwWs, M., MANN, T., AND THEKKATH, C. A.
Block-level security for network-attached disks. In
Proceedings of the Second USENIX Conference on File

and Storage Technologies (FAST) (San Francisco, CA,
2003), pp. 159-174.

AMER, A., LoNGg, D. D. E., PAR1s, J.-F., AND
BurNs, R. C. File access prediction with adjustable
accuracy. In Proceedings of the International
Performance Conference on Computers and
Communication (IPCCC ’02) (Phoenix, Apr. 2002),
IEEE.

AZAGURY, A., CANETTI, R., FACTOR, M., HALEVI,
S., HENis, E., NAOR, D., RINETZKY, N., RODEH, O.,
AND SATRAN, J. A two layered approach for securing
an object store network. In IEEFE Security in Storage
Workshop (2002), pp. 10-23.

BraaMm, P. J. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster
File Systems, Inc., Aug. 2004.

FacTor, M., NAGLE, D., NAOR, D., RIEDEL, E.,
AND SATRAN, J. The OSD security protocol. In
Proceedings of the 3rd International IEEE Security in
Storage Workshop (2005), pp. 29-39.

GIBSON, G. A., NacLE, D. F., Amiri, K., BUTLER,
J., CHANG, F. W., GoBIOFF, H., HARDIN, C.,
RIEDEL, E., ROCHBERG, D., AND ZELENKA, J. A
cost-effective, high-bandwidth storage architecture. In
Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (San Jose, CA, Oct.
1998), pp. 92-103.

GOBIOFF, H. Security for a High Performance
Commodity Storage Subsystem. PhD thesis, Carnegie
Mellon University, July 1999. Also available as
Technical Report CMU-CS-99-160.

MERKLE, R. C. Secrecy, authentication, and public
key systems. PhD thesis, Stanford University, 1979.
OLDFIELD, R. A., MACCABE, A. B., ARUNAGIRI, S.,
KORDENBROCK, T., RIESEN, R., WARD, L., AND
WIDENER, P. Lightweight 1/O for scientific
applications. Tech. rep., Sandia National Laboratories,
SAND2006-3057, May 2006.

OLson, C. A.; AND MILLER, E. L. Secure capabilities
for a petabyte-scale object-based distributed file
system. In Proceedings of the 2005 ACM Workshop on
Storage Security and Survivability (Fairfax, VA, Nov.
2005).

Panasas. http://www.panasas.com.

REED, B. C., CHRON, E. G., BUrNs, R. C., AND
Long, D. D. E. Authenticating network-attached
storage. IEEE Micro 20, 1 (Jan. 2000), 49-57.
SCHWAN, P. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
Symposium (July 2003).

SINGH, A., GOPISETTY, S., DUYANOVICH, L.,
VORUGANTI, K., PEASE, D., AND Liu, L. Security vs
performance: Tradeoffs using a trust framework. In
Proceedings of the 22nd IEEE / 18th NASA Goddard
Conference on Mass Storage Systems and Technologies
(2005).

Wang, F., XiN, Q., Hong, B., BRANDT, S. A.,
MILLER, E. L., LonG, D. D. E.; AND McLARTY,

T. T. File system workload analysis for large scale
scientific computing applications. In Proceedings of the
21st IEEE / 12th NASA Goddard Conference on Mass



Storage Systems and Technologies (College Park, MD,
Apr. 2004), pp. 139-152.

WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MALTZAHN, C. Ceph: A scalable,
high-performance distributed file system. In
Proceedings of the Tth Symposium on Operating
Systems Design and Implementation (OSDI) (Seattle,
WA, Nov. 2006).

[17] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND
MartzAHN, C. CRUSH: Controlled, scalable,
decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC ’06) (Tampa, FL, Nov. 2006),
ACM.



