
Purity: Building Fast, Highly-Available Enterprise Flash
Storage from Commodity Components

John Colgrove, John D. Davis, John Hayes, Ethan L. Miller, Cary Sandvig,
Russell Sears

∗
, Ari Tamches, Neil Vachharajani, and Feng Wang

Pure Storage
Mountain View, CA, USA

coz,johnd,jhayes,elm,cary,sears,ari,neil,fwang@purestorage.com

ABSTRACT
Although flash storage has largely replaced hard disks in
consumer class devices, enterprise workloads pose unique
challenges that have slowed adoption of flash in “perfor-
mance tier” storage appliances. In this paper, we describe
Purity, the foundation of Pure Storage’s Flash Arrays, the
first all-flash enterprise storage system to support compres-
sion, deduplication, and high-availability.

Purity borrows techniques from modern database and key-
value storage architectures, and introduces novel storage
primitives that have wide applicability to data management
systems. For instance, all writes in Purity are monotonic,
and deletions are handled using an atomic predicate-based
tuple elision primitive.

Purity’s redundancy mechanisms are optimized for SSD
failure modes and performance characteristics, allowing for
fast recovery from component failures and lower space over-
head than the best hard disk systems. We built deduplica-
tion and data compression schemes atop these primitives.

Flash changes storage capacity/performance tradeoffs: un-
like disk-based systems, flash deployments are rarely perfor-
mance bound. A single Purity appliance can provide over
7 GiB/s of throughput on 32 KiB random I/Os, even through
multiple device failures, and while providing asynchronous
off-site replication. Typical installations have 99.9% laten-
cies under 1 ms, and production arrays average 5.4× data
reduction and 99.999% availability.

Purity takes advantage of storage performance increasing
more rapidly than computational performance to build a
simpler (with respect to engineering, installation, and man-
agement) scale-up storage appliance that supports hundreds
of terabytes of highly-available, high-performance storage.
The resulting performance and capacity supports many cus-
tomer deployments of multiple applications, including scale-
out and parallel systems, such as MongoDB and Oracle
RAC, on a single Purity appliance.

∗Corresponding author
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2742798

Categories and Subject Descriptors
D.4.2 [Storage Management]: Storage hierarchies; Sec-
ondary storage

Keywords
Storage Area Networks; Enterprise Flash Storage; Dedupli-
cation; Log structured storage; High availability; Scale up
architectures

1. INTRODUCTION
Most “performance tier” applications—those that favor

I/O rate over capacity—store their data in virtual block de-
vices that are exposed over the network by enterprise storage
arrays. Historically, such systems used hard disks, so ran-
dom reads and writes were expensive, but raw storage ca-
pacity was cheap. As a result, large-scale storage resorted to
scale-out architectures to achieve reasonable performance.

Flash reverses this capacity/performance tradeoff and, as
flash storage capacity becomes cheaper, it has begun to dis-
place disk for performance tier applications. However, enter-
prise users demand resiliency, high availability, and scalabil-
ity in addition to performance, and want it all at no higher
cost per gigabyte than they pay for high-performance disk.
In this paper, we present Purity, a system that uses com-
modity solid state disks (SSDs) and servers to meet these
requirements.

Enterprise storage users frequently make clones, snap-
shots, and off-site copies of volumes to provide data re-
siliency. To make these operations more efficient and less
disruptive, we store data in mediums—coarse-grained map-
pings that we expose as virtual containers. This allows us to
virtualize all storage resources, making many of the system
features that conserve capacity easier to implement, at the
expense of additional random reads.

We leverage flash’s ability to perform fast random reads
and sequential writes by compressing data and storing a sin-
gle instance of duplicate blocks written to different logical
addresses. Using these and other techniques, we significantly
reduce the amount of flash capacity needed for a given work-
load. This provides us cost parity with disk capacity at sig-
nificantly higher levels of availability and performance than
disk.

Although they continue to improve, SSDs pay a large
penalty for random writes [55], so Purity uses log-structured
indexes and data layouts to ensure that data is written in
large sequential chunks. We stripe the data written by these
structures across many drives, and use Reed-Solomon encod-

ing for redundancy, allowing Purity to tolerate the loss of
two SSDs without losing availability. In fact, we encourage
potential customers to pull drives and unplug controllers as
they evaluate Purity and competitive products.

Flash products for higher performance environments fo-
cus on direct-attached storage instead of redundant deploy-
ments. This causes them to become unavailable during ma-
chine failures, and prevents deduplication and load balanc-
ing across multiple tenants. In contrast, Purity allows quick
failover from one controller to a live spare by having the
spare “follow” the primary system, at significantly lower
costs.

On average, these data reduction and fault tolerance tech-
niques provide real-world applications with 5.4× more effec-
tive storage than the physical storage in the system, exclud-
ing gains from “thin provisioning,” which would count un-
used space as application data. On average, our customers
provision approximately 12× more virtual space than phys-
ical storage. We publish these numbers continuously1 as
averages across customer installations that are constantly
monitored by our operations team.

This paper makes the following contributions: In Section 2
we examine the implications of flash storage on disk-based
enterprise and scale-out storage architectures. Section 3
presents a set of design principles, motivated by these hard-
ware trends and recent research results, upon which Purity
is based. Next, in Section 4 we discuss Purity’s implementa-
tion in more detail, showing that aggressive data reduction
can be integrated with solid state storage while maintain-
ing high performance. Finally, Section 5 discusses lessons
learned from real-world deployments of Purity, and the im-
plications of flash storage on application and database in-
frastructure.

2. BACKGROUND
Storage software designs are closely coupled to the perfor-

mance and reliability characteristics of the underlying stor-
age devices. As solid state disks replace hard disks, they are
forcing a rewrite of legacy storage systems. Purity is one
such redesign, aimed at efficiently using commodity flash
drives to provide enterprise-quality block storage.

This section provides an overview of solid state disk (SSD)
technology, and then describes the approaches that existed
when we began development of Purity. We describe the
impact of affordable SSDs on enterprise storage, and then
argue that the vast majority of performance-oriented disk-
based key-value applications are now better served by scale-
up storage architectures.

2.1 Solid State Disks
SSDs are much faster and more reliable than mechanical

disks, but they have performance quirks that prevent un-
modified legacy storage systems from using them optimally.
Purity and other SSD-optimized storage systems make up
much of the difference by acting as a translation layer for
existing applications.

An SSD consists of a set of flash chips that store data
persistently and an ASIC with a purpose-built processor,
error correction and redundancy hardware (Figure 1). This
is driven by firmware that is at least as complicated as the
operating system storage stack. The ASIC and firmware

1http://www.purestorage.com/

SSD

ASIC
Controller •••DieDieDieDie

DieDieDieDie
DieDieDieDie

•••DieDieDieDie
DieDieDieDie

DieDieDieDie

•••

•••

Page

Erase block

Figure 1: Architecture of an SSD.

combination is usually called a flash translation layer (FTL).
Each flash chip contains a set of independent dies that can
run in parallel; typical SSDs do not reach peak throughput
with read queue depths less than 32.

Each die is broken into erase blocks of 2–16 MiB, which
are, in turn, broken into pages of 512–4096 bytes. Pages
are the minimum read/write unit. However, a page must
be erased at some point before being written, and an entire
erase block is erased in a single operation.

Because SSDs cannot efficiently overwrite data in place,
the FTL must maintain mappings between logical sector ad-
dresses and physical locations. This process is complex and
undocumented, and varies across vendors, models, and even
firmware revisions, leading to performance quirks. Worse,
while an SSD is erasing a block, it cannot read data from
physically-related blocks, leading to read latency spikes. Pu-
rity goes to great lengths to expose simple append-only write
workloads to the SSDs, and to avoid creating situations that
expose these performance issues, as described in Section 4.4.
We also carefully validate firmware revisions to ensure that
this approach leads to deterministic, reliable behavior in
practice.

Modern SSDs can store from 1–4 bits per cell. Storing
more bits per cell increases data density, but decreases en-
durance—the number of times a given cell may be erased and
still reliably store data. SLC SSDs, which store 1 bit per cell,
are rated to support about 100,000 program/erase (P/E) cy-
cles. Multi-level cell (MLC) SSDs store 2 bits per cell, and
typically support 3000–5000 P/E cycles, while newer tech-
nologies such as TLC and QLC store 3 bits and 4 bits per
cell, respectively, further increasing density at the expense
of fewer P/E cycles. Purity systems currently store data in
consumer-grade MLC SSDs. Because of the way Purity uses
flash, P/E ratings significantly underestimate real-world en-
durance. Section 5.1 discusses the discrepancy and describes
the flash failure modes we have encountered.

2.2 Disk-based enterprise storage
Enterprise applications can require tens of thousands of

random I/O operations per second (IOPS), but a typical
performance hard disk provides only a few hundred IOPS.
To work around this mismatch, enterprise computing en-
vironments incorporate block storage appliances that ag-
gregate large numbers of disks behind a small number of
controllers, making them accessible to applications such as
scale-up databases, virtual machines, and file servers via
standard protocols such as iSCSI and FibreChannel. For
example, EMC’s midrange VNX-7500 supports 1,000 spin-
ning disks in its largest configuration, while EMCs VMAX

Table 1: Comparison of Purity and a disk array.
Metric Purity Disk Improvement
Peak IOPS @ 32 KB 200K 65K 3.08×
Latency 1ms 5ms 5×
Usable Capacity 40 TB 25 TB 1.6×
Rack Units (RUs) 8 28 3.5×
Installation 4 hours 40 hours 10×
Power 1240 W 3500 W 2.82×
Annual Power Cost $13,034 $36,792 2.82×
$/GB $5 $18 3.6×
IOPS/RU 25,000 2321 10.7×
IOPS/W 161 18.6 8.6×
IOPS/$ 1 0.144 6.9×

arrays leverage custom silicon to scale to even larger config-
urations.

Enterprise arrays typically consist of a large number of
RAID-protected disks, a battery-backed RAM to accelerate
commit of data and logs to “stable” storage, and a large data
cache for the hottest data. Database engines and operating
systems assume disk is slow, and thus cache their working
sets in client (host) DRAM, allowing the total amount of
cache to scale linearly with the number of clients and avoid-
ing network latencies for cache hits.

Although they do not provide high-availability and other
important enterprise features, consumer-oriented SSDs de-
liver 100–1000× more IOPS than enterprise spinning disks,
suggesting that drastically simpler deployments should be
able to match the throughput of these thousand-disk arrays.

This intuition is borne out in Table 1, which compares the
published specifications for the VNX and a Purity array [46].
The numbers are from a description of our reference architec-
ture for Oracle databases, which includes benchmark results
and explains how to deploy Oracle RAC atop a Purity array.

Although the Purity array outperforms the disk array
across all our metrics, the difference in cost/performance is
striking: Purity cuts the cost of an I/O by about an order of
magnitude while decreasing the cost of usable capacity. This
has changed the way users manage storage: IOPS cost less
than careful performance provisioning, so most customers
simply throw hardware at the problem rather than spend-
ing their time manually configuring the disk array to ensure
that important applications are not starved for IOPS.

2.3 High-performance scale-out storage
Enterprise storage only scales up to a certain point. As

companies attempted to leverage it for Internet workloads,
they discovered that the largest available systems were un-
able to service consumer-facing web sites [11].

Unlike most enterprise applications, these services did not
require strong isolation or consistency, so homegrown scale-
out storage systems with relaxed consistency models were
sufficient. As with enterprise storage, these systems targeted
spinning disk. Given the advantages of solid state storage, it
is natural to ask if they are still necessary or cost-effective.

In this section, we compare high-performance scale-out
disk storage with a large Purity array that targets data cen-
ter storage consolidation. The FA-450 provides clients with
200,000 32 KiB peak IOPS, and can be configured with up
to 70 TB of physical (250 TB effective) storage. We pes-
simistically assume object sizes of 32 KiB, which is larger
than typical key-value store records.

Conveniently, the YCSB benchmarking study provides us
with directly comparable numbers for a wide range of key
value stores [16]. They all achieve approximately 1600 ops/s
per machine in the best case, which is less than 1% the
throughput of a FA-450.

Where sufficient information is available, we repeat this
calculation in Table 2 by looking at published numbers from
real-world disk-based scale-out deployments, and, again, es-
timate that one Purity array can replace hundreds of disk-
based machines. We use disk-based key-value store hard-
ware requirements and scalability bottlenecks from the lit-
erature, focusing on 2010–2014, when SSD storage deploy-
ments began to become practical.

We believe our estimated 100–250:1 consolidation ratios
apply to a wide-range of disk-based storage solutions, and
our customers have reported similar ratios (Section 5.4).

Recall that application designers were forced to move to
key-value storage systems because their applications were
too demanding to be stored in a scale-up system. However,
the cost of managing a large scale-out cluster is significant,
pushing these applications to consolidate onto a small num-
ber of monolithic clusters.

The deployments in the table are meant to serve dozens
to thousands of applications. The vast majority of such
applications require only a small fraction of a scale-up flash
storage system. This eliminates the need for extremely large
consolidated storage infrastructure, and allows applications
to migrate to simpler scale-up solutions that provide strong
application-level consistency.

The logistical improvements associated with 100:1 consol-
idations are significant. It takes approximately four hours to
unpack a Purity array, physically install it and finish provi-
sioning volumes. We help customers run on-site evaluations
of our products on their own workloads before making a pur-
chase. This is simply not practical for custom-built scale-out
storage clusters.

The transition from disk to flash is driving aggressive stor-
age consolidation. Even the largest scale-out applications
from just a few years ago are now better served by a few
scale-up machines than by large-scale clusters. In turn, this
is improving application semantics, reducing costs, and en-
abling new classes of applications.

3. DESIGN PRINCIPLES
The previous section describes the approaches taken by

existing systems and the storage trends that led us to break
from those designs. Purity was designed around several core
principles that are based upon the use of SSDs rather than
disks for the underlying storage. These design principles are
used throughout Purity’s implementation.

To recap, Purity exposes virtual block devices over local
networks. Systems such as databases and virtual machine
infrastructure use these block devices to store data. These
applications run in highly-available environments, and stan-
dard protocols such as iSCSI allow them to coordinate access
to a given block device amongst multiple machines.

Simple applications run in primary-secondary mode. One
machine obtains an exclusive lease on the block device. If
the primary fails, the secondary obtains the lease and con-
tinues operation. Higher-level issues (such as client session
management) are handled by the applications deployed atop
Purity.

Table 2: Key-value store deployment sizes and estimated Purity FA-450 consolidation ratios. Purity arrays
improve data center storage densities by orders of magnitude, and can service multiple scale-out applications.

Service Scale Year Scope Apps Nodes ≈FA-450’s Nodes
FA−450

Apps
FA−450

PNUTS [15,16] 1.6M op/s (design target) 2010 Data center - 1000 8 120 -

Spanner [18] 1-10 PB (design target) 2010 Data center 300 103 -104 4-40 250 7.5 -75
S3 [31] 1.5M op/s (peak) 2013 Global - - 6∗ - -
DynamoDB [32] 2.6M op/s (mean) 2014 Region - - 13 - -

∗S3 mixes large and small objects; our estimate ignores large objects.

In systems such as parallel databases, multiple machines
simultaneously access the same block devices. The clients
manage issues such as cache coherence, often by leveraging
block-level leases on the underlying storage.

In addition to carefully managing faults, Purity gener-
ates and manages large amounts of metadata. Despite the
relative simplicity of block-oriented storage, users demand
high-level volume management features such as snapshot-
ting, off-site replication and security. Furthermore, Purity
relies on compression and deduplication to provide storage
capacities at costs comparable to hard disks. Purity stores
the resulting metadata in log structured relational struc-
tures.

For these reasons, Purity includes from-scratch implemen-
tations of locking and indexing primitives that should be
familiar to database implementors. Indeed, Purity incorpo-
rates a wide range of recent advances in database implemen-
tation techniques.

3.1 Perform extra reads to conserve space
Flash capacity is more expensive than disk, requiring that

we reduce the total amount of storage actually required as
much as possible. Our system implements both compression
and deduplication on the fly, cutting storage requirements
by a factor of 3–10× or more, depending on the workload,
while still providing very high performance. Purity’s dedu-
plication and error correction coding techniques incur addi-
tional random reads, but our use of SSDs makes the cost
acceptable [54]. Purity employs compression judiciously, re-
ducing the amount of data transferred between storage and
RAM [34]. Update-in-place systems must align compressed
data to fixed boundaries to allow future updates. In con-
trast, like other log-structured systems, Purity is able to
pack data tightly, leading to simpler, more efficient com-
pression techniques [12,50,53,56].

3.2 Leverage logical monotonicity
Purity represents all persistent data as immutable facts

(tuples). Deletions are represented as immutable retrac-
tions of facts, e.g., “X is no longer true.” Facts incorporate
sequence numbers, allowing us to represent arbitrary inser-
tion and deletion schedules. This makes it easier to reason
about complex parallel schedules and failure scenarios.

Over time, machines have become increasingly parallel,
and SSDs have drastically lowered the price of I/O opera-
tions. However, the cost of synchronization primitives has
remained relatively flat. In order to leverage the computa-
tional power and storage bandwidth of modern systems, we
need to be extremely careful to avoid unnecessary synchro-
nization across CPU sockets and cores. Similarly, Purity
arrays contain multiple storage devices and caches. For per-
formance, we process updates in parallel whenever possible.

Since insertions and deletions simply insert immutable
facts into Purity relations, they are idempotent and com-
mutative. This allows us to use relaxed synchronization and
ordering primitives without sacrificing correctness. It also
enables a novel approach to deletion we call elision. Eli-
sion allows us to atomically delete all tuples that match a
predicate, and is discussed in more detail in Section 4.10.

Unlike standard key-value stores, Purity stores retractions
in a separate table from normal facts, and readers are al-
lowed to run in a relaxed consistency mode that simply
ignores retractions, allowing them to observe tuples that
no longer exist. Similarly, confused or lagging writers may
safely reorder inserts and deletes to no ill-effect.

Our approach to insertions and deletions is similar to the
programming methodology espoused by the CALM theo-
rem [3], which states that eventually consistent programs
are exactly those that can be built by monotone logic. Log-
ically monotone programs are those in which facts that be-
come true never become false. Sequence numbers violate this
property because the current sequence number changes over
time, so they act as a controlled source of non-monotonicity.

Purity uses this to implement semantics stronger than
eventual consistency, such as total ordering of writes to each
sector, atomic snapshots and crash consistency. Similarly,
we can implement linearizable updates by having write re-
quests wait until their corresponding sequence number has
propagated throughout the system. See the CRON principle
for a more theoretical grounding of this approach [4].

As far as we know, Purity is the first data management
system to uniformly apply these principles across every layer
of the stack. Indeed, Purity was implemented as the CALM
conjecture and CRON principle were published. As we de-
scribe Purity’s implementation in Section 4, we present prac-
tical applications of these ideas in more detail.

3.3 Carefully manage writes
Although SSDs provide higher raw write bandwidth than

hard disks, SSD writes come with hidden costs. They wear
out the underlying flash, and, despite good average perfor-
mance, flash translation layers behave erratically when ex-
posed to random writes [43]. In theory, FTL behavior should
improve, but a few issues prevent this in practice.

First, consumer use cases drive FTL designs. We have
characterized and validated SSDs from a range of vendors
over the last five years. Enterprise performance frequently
regresses, even as consumer benchmarking scores improve.

More fundamentally, our x86 controller has a global view
of the workload and much more computational power than
the SSD FTL, allowing it to apply optimizations and make
global decisions that the drives are incapable of.

Purity manages writes in a few different ways. As dis-
cussed above, Purity uses log-structured layouts and data
reduction techniques to translate application-level random

writes into compressed sequential writes. This simplifies the
job of the FTL, though we still need to verify that each SSD
revision we ship behaves predictably when confronted with
sequential writes. Also, we schedule reads to avoid SSDs
that are performing writes, reducing read latency variance.

Materialized aggregates are a significant source of writes
in Purity. Queries such as“How many references are there to
this block?” are common. Instead of keeping precise answers
in flash, we keep approximations and then fix them up by
issuing additional reads at runtime.

3.4 Virtualize resources
Purity provides an update-in-place abstraction atop log-

structured storage primitives. This level of indirection en-
ables optimizations such as compression and deduplication,
and it also breaks the direct correspondence between appli-
cation disk blocks and physical disk blocks. This allows us
to choose data layouts that directly support features such as
volume cloning and snapshots. When implemented carefully,
using these abstractions to virtualize volumes adds negligi-
ble runtime overhead. We use mediums to implement such
functionality.

4. IMPLEMENTATION
Based on the hardware trends and design principles out-

lined in the previous sections, we implemented a scale-up
storage appliance capable of servicing all but the largest
workloads. A scale-up appliance based on commodity servers
combined with consumer-grade SSDs provided the right bal-
ance of cost, performance, reliability, and capacity. Our
challenge was to implement Purity in an environment that
could easily become CPU-bound, not I/O bound, as legacy
disk-based systems are.

Significant software development is required to use perfor-
mant, low-cost consumer SSDs in Purity. For example, we
use several data reduction techniques to increase the effec-
tive system capacity and we trade SSD throughput perfor-
mance for consistently low I/O latency. Likewise, the hard-
ware platform provides multiple paths to storage to enable
software to maintain 24/7 availability, even during systems
upgrades and hardware failures. Finally, fully virtualizing
and abstracting the storage resources enables low-overhead
features such as snapshots and image cloning, which also
dovetails well with our deduplication features.

This section starts at the lowest levels of Purity’s design,
and describes how we progressively layer higher levels of the
stack upon the foundation we have already described. Purity
borrows concepts heavily from the literature; we cite existing
work when possible, and focus on novel aspects here.

4.1 Flash Array hardware
Pure Flash Arrays consist entirely of commodity hardware

(Figure 2). Each array contains two controllers, which are
standard dual-socket x86 machines. Like most commodity
servers, these machines include standard redundancy fea-
tures, such as dual power supplies. Purity provides access
to virtual block devices in active-active mode, which means
that clients treat network ports on the two servers inter-
changeably, allowing clients to transparently redirect traffic
in the event of a controller failure.

However, only one Purity controller serves traffic at a
time. The other forwards requests to the primary via in-
ternal InfiniBand connections. The InfiniBand links are the

Shelf

Customer network (Ethernet / Fiber Channel)

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

NVRAM NVRAM

Expansion Shelves

SSD

SSD

SSD

SSD

SSD

SSD

SSD

SSD

Controller
x86

x86 DRAM

Controller
x86

x86 DRAM

Figure 2: Flash Array consists of commodity compo-
nents. At failure, interposers transfer control of the
SSDs to the secondary. The controllers are stateless.

throughput bottleneck in our current arrays. As a side effect,
Purity latencies improve slightly when the secondary fails.
This is preferable to degrading application performance dur-
ing failures, which risks losing availability.

Flash Array appliances connect to customer networks via
multiple links. Currently, our largest model provides 7 GB/s
of storage bandwidth via up to 12 × 16 Gb/s fiber channel
links, 12 × 10 Gb/s Ethernet iSCSI links, or various combi-
nations of the two technologies. All Flash Arrays include
network replication ports.

The controllers connect to shelves that contain between
11 and 24 MLC drives. We use consumer grade SATA SSDs
with SAS interposers. The interposers connect each drive
to both controllers. When one of the controllers fails, the
remaining controller immediately gains access to the SSDs.

In addition to the SSDs, shelves contain NVRAM devices
for logging frequently updated structures. The NVRAM
is part of the shelf so that the controllers themselves are
stateless and easily replaced.

When Purity launched, NVRAM was not widely available.
Instead, we use an extremely high-performance SLC flash
part that provides us with bounded latency, and many more
P/E cycles than the rest of the flash in the system. Below,
we use the word “NVRAM” to refer to this device, since its
performance characteristics are closer to NVRAM than to
commonly deployed flash.

4.2 Physical storage layout
Purity stores data in segments (Figure 3) each of which is

striped across multiple SSDs, using a high-performance soft-
ware implementation of Reed-Solomon [45] to ensure that no
data is lost even if two SSDs fail. In addition, Purity can
leverage the parity pages within each SSD; flash translation
layers can quickly recover a single corrupted page without
the need to read data from the other drives in the segment.

A segment is composed of one allocation unit (AU) from
each of the drives across which it is striped; the specific
drives may be different for each segment and are chosen
when the segment is written. Allocation units, which are
8 MB in current systems, are the minimum allocation granu-
larity for an SSD; future AUs could be different sizes. Within
a segment, each SSD is written atomically in write units,
which are currently 1 MB. A horizontal stripe of write units
across the segment, called a segio, accumulates compressed

Segment
D

P

D

P
Q

D

P
Q

D

P
Q

D

P
Q

D

P
Q

D
P
Q

P
Q

Q

Allocation unit (AU)

cblocks Log records

Segio

Figure 3: Data layout in Purity. Segios are parity
protected and striped across devices. Data accumu-
lates from the front of the segio, and log records
(tuples) are written from the back. When the segio
is full, it is flushed to the SSDs.

Update
DRAM (index order) NVRAM (time order)

SSD (segios)
committed
timestamps

timestamped
indexes

Figure 4: Monotonic write-ahead logging implemen-
tation. The segio layer joins the commit stream with
a stream of time-bounded indexes, and then trims
the DRAM and NVRAM (not shown).

user data from the front, and accumulates log records from
the back (Figure 3). When the two sections meet, the segio
is completed and marked for flush to SSD. However, Purity
is very flexible; a segio may only contain user data or log
records, as well.

Writing log entries is less expensive than re-writing entire
data sections. However, it still involves writing multiple
megabytes of data, and is too high-latency to be useful for
committing application writes. Instead, we commit writes
to NVRAM, and then write them back to segios (Figure 4).
The commit path implementation is monotonic; commits
are expressed in terms of immutable facts that flow through
the system. We describe the benefits of this below, in the
discussion of recovery and pyramids.

In the remainder of the paper, we ignore the existence of
segios, and refer to them as segments instead. Segios are an
optimization that allows us to flush data to SSDs in smaller
chunks, so distinguishing between segios and segments would
complicate our discussion considerably, to little benefit.

4.3 Recovery
At recovery, we scan segment headers. This allows us

to discover facts that were persisted shortly before crash,
since segment headers contain information about the se-
quence numbers they encode. Segments are self-describing,
and early versions of Purity simply checked each header in
the system at boot.

Segments are fairly large, and random SSD reads are in-
expensive, so this approach worked reasonably well. How-
ever, it is linear in the size of the Purity array’s storage.
Although this scan was never the dominant cost of a cold
boot, controller failover performs a segment scan, and its
performance is critical. During failover, the Purity array

Main region

Boot region
PyramidsFrontier Set

U
SeqAU VAUSegment

Figure 5: Purity always writes large sequential
chunks, and therefore scatters log records amongst
user data. Instead of scanning all AUs for log
records, we maintain a frontier set—the list of AUs
that we plan to use soon. Purity stores all its data as
immutable facts, so recovery consists of computing
set unions over the discovered tuples.

cannot respond to I/O requests, and typical clients time out
after 30 seconds. Therefore, to avoid application failures
during controller failure, we have to guarantee that recovery
will complete in under 30 seconds.

It is tempting to synchronously ship the log to the sec-
ondary during normal operation. However, doing so would
cause the system to become unresponsive if the secondary
failed. Instead, the primary controller asynchronously warms
the cache of the secondary, reducing the total amount of I/O
required for failover. With this optimization, the scan takes
12 seconds on recent hardware; combined with other, less ex-
pensive, aspects of recovery, this brought previous versions
of Purity dangerously close to the 30 second timeout.

Purity divides storage into two regions. The main region
contains application data, medium tables, deduplication in-
formation, and the other metadata Purity maintains during
forward operation. The boot region is a tiny percentage of
the total storage, and contains the locations of the relations
and allocator state for the main region.

Instead of scanning all segment headers to find log records
at failover, we store a frontier set in Purity’s boot region
(Figure 5). This stores the set of free AUs that are ready
to be reused. We constrain the allocator to allocate AUs
from the currently persisted frontier set, allowing us to limit
log record scans to segments in the frontier set. As an opti-
mization, we also store speculative and transition sets that
contain approximations of future frontier sets. These usu-
ally contain adequate approximations of future frontier sets,
allowing us to rewrite the frontier set less frequently.

An early prototype took this idea one step further, and
stored portions of the frontier set in log records. Ultimately,
this was untenable: trimming segments could break the
chain of log records, forcing us to block space reclamation
on log updates. This was complicated and deadlock prone,
so we abandoned chained frontier sets, and instead use the
scheme in Figure 5.

In practice, frontier set writes consist of well under 1%
of writes, and reduce startup scan times from 12 s to 0.1 s
on our current arrays. This further reduces the impact of
controller failover on applications, and keeps us well below
the 30 second hard limit.

Scanning NVRAM and the log records provides us with a
set of facts that might be missing from the persistent copies
of Purity’s indexes. We leverage logical monotonicity, and
simply insert these facts into the indexes in question. Since
all tuples in Purity are immutable facts, inserting stale or
duplicate records is harmless.

Recovery must be robust against corrupted pages and
missing drives. Since log records are stored in segments,
they are automatically protected by Purity’s ECC scheme.

4.4 I/O scheduling
Purity aims to service all application requests with less

than a 1 ms tail latency. To this end, we implemented Purity
in event-driven C++, with a single thread pinned to each
core. Event handlers run with affinity to NUMA groups
to avoid cache synchronization traffic. We carefully instru-
ment and bound the latencies of each request handler in
the system, preventing one application or background re-
quest from monopolizing an x86 core. Whenever feasible,
the event handlers are lock-free, further reducing the chances
that requests will lead to CPU stalls and impact the latency
of unrelated requests.

Before shipping SSDs to customers, we carefully qualify
both the physical hardware, and also the firmware revisions
that are allowed into our appliances. This allows us to avoid
drives with unpredictable request latencies.

As is common practice with other large-scale storage sys-
tems [19], we measure the latency of each request and use
Reed-Solomon to reconstruct requested data whenever a re-
quest takes longer than our 95th percentile latency.

Despite all of these efforts, the SSDs still cause stalls, and,
as of Purity release 4.0, slow SSD requests are the leading
cause of high latency application requests.

Since we cannot avoid using SSDs and FTLs with unpre-
dictable latencies, we have to work around the underlying
hardware. The vast majority of slow SSD reads happen
while the SSD is in the process of servicing segment write
requests. Therefore, we try to avoid writing to more than
two SSDs per ECC group at the same time, and treat SSDs
that are in the process of writing data as though they have
failed.

Instead of reading from the busy SSDs, we rebuild the
data using parity data. Purity uses 7 + 2 Reed-Solomon
encoding, with each segment written across a (potentially
different) set of the 11 drives in a write group. In the worst
case, we service 2

11
of reads in this way, each of which re-

quires reading 7 drives, increasing costs by 7 × 2
11
≈ 1.3×

for write-heavy workloads.
With these optimizations, Purity provides an order of

magnitude lower tail latencies than the best disk or hy-
brid disk-flash appliances, more than compensating for the
throughput penalties.

4.5 Mediums
The vast majority of data stored in Purity is compressed

block data from applications. Unlike metadata, this data
is stored without regard for locality or careful ordering by
key. Garbage collection strategies for unordered storage are
well-understood, and are significantly less expensive than
approaches for ordered indexes [48,52,58].

Purity exports a volume-based interface to users: blocks
are addressed by 〈volume, offset〉. Internally, however, Pu-
rity maintains a single mapping structure for all user data,
regardless of the volume on which it is stored. Rather than
associate data with a particular volume, Purity logically
stores user data in containers called mediums; each user-
visible data block is thus accessed using a 〈medium, offset〉
key.

The medium table (Figure 6) is used to identify all pos-
sible keys that might be used to find the value for a given
〈volume, offset〉 lookup. Figure 6 shows examples of snap-
shots (14 is a snapshot of 12, 20 is a snapshot of 18, and 22
is a snapshot of 21) and clones (15 and 18 are clones of part

Source Target
Medium Start:End Medium Offset Status

12 0:3999 none RO
14 0:3999 12 0 RW
15 0:999 12 2000 RW
18 0:999 12 2000 RO
20 0:999 18 0 RO
21 0:999 20 0 RO
22 0:499 21 0 RW
22 500:999 12 2500 RW
22 1000:1999 none RW

Figure 6: Information maintained for each medium.

of 12). In medium 22, it also shows that the table facilitates
shortcuts: since blocks 500–999 haven’t been written since
the snapshot was taken of 12, medium 22 can refer directly to
12, allowing for fewer lookups. Purity uses additional flags
to optimize lookup and reduce the number of references that
need to be made to the table, including flags that indicate
when no blocks have been written to a range and flags that
terminate recursion.

4.6 Cblocks
Existing storage protocols dictate a minimum block size

of 512 B, which we use as the minimum unit of dedupli-
cation and compression in Purity. Mediums store blocks
of application data in a compressed format called a cblock.
Each medium contains a set of cblocks that act as a patch
to be applied to the underlying medium. Although medi-
ums could be stacked arbitrarily, Purity’s garbage collector
rewrites trees of mediums in a flattened form so that appli-
cation reads never have to access more than three cblocks.

Most applications perform I/O operations much larger
than 512 B: across our customer installations, I/O requests
are ≈ 55 KiB on average. Most flash and hard disk arrays
force administrators to set a single optimal block size per
volume. Such systems attempt to align application pages
with RAID stripe geometries. This does not work well in
practice, since most systems perform I/Os of multiple sizes.
For example, customer telemetry data tells us that Oracle
aggressively prefetches pages, leading to a minimum effec-
tive I/O size well above the configured database page size.
Also, it chooses different transfer sizes for log and data ac-
cesses, forcing customers using other arrays to configure mul-
tiple virtual block devices with different RAID geometries
for each database instance.

We went to great lengths to avoid exposing tuning knobs
to customers. Purity is often used to consolidate multiple
workloads, making it extremely difficult to manually tune.
Also, Purity’s simplicity of installation and administration
is an important selling point to most customers.

Instead of having administrators guess optimal block sizes,
Purity infers optimal transfer sizes by observing I/O re-
quests. The vast majority of read requests access data using
the same alignment and block size as the write request that
created the data in question. Although Purity cblocks can
represent as little as 512 B of data, they are sized to match
application writes, up to 32 KiB. This improves compression
ratios and also access times. Since the data is likely to be
retrieved with the same granularity as the write, small read
requests generally retrieve a single cblock.

4.7 Deduplication
Purity tracks deduplication blocks at 512 B granularity,

but only records the hash value of every eighth block writ-
ten, using hashes no larger than 64 bits. While only 1/8
of all hashes are recorded, all hashes are looked up. If a
block’s hash value matches one already stored, Purity per-
forms a byte-level check to confirm that the block is a du-
plicate, allowing us to use shorter hashes with a collision
rate of 10−6 or worse, since collisions only cost a data block
comparison and do not affect correctness. We then use the
duplicate block as an “anchor” to find other, nearby dupli-
cates. This approach detects most duplicate sequences of
at least 8 blocks (4 KiB), regardless of alignment, and is a
reasonable tradeoff between occasionally missing duplicates
and maintaining a small index of block hash values. For
duplicates, Purity records a mapping from the new logical
address to the 〈segment , offset〉 of the existing data.

Purity performs inline deduplication, allowing it to de-
tect duplicates before writing the duplicate value somewhere
on SSDs. We use a number of heuristics to improve inline
deduplication performance. For instance, inline deduplica-
tion only checks for duplicates of recently written data and
frequently deduplicated data; in practice, inline deduplica-
tion finds most duplicates. Later, as garbage collection scans
SSDs in the background, it performs a more expensive dedu-
plication pass, and deduplicates the blocks we did not have
time to process earlier. Garbage collection also attempts
to segregate deduplicated blocks into their own segments,
since blocks with multiple references are less likely to be-
come completely unreferenced due to overwrites.

4.8 Log structured indexes
Purity stores its metadata in relations that are indexed

by zero or more log-structured merge trees called pyramids.
Pyramids are tightly coupled to our NVRAM and segment
persistence schemes.

Insertions are handled by persist operations that assign a
sequence number to a batch of tuples and insert them into
NVRAM. Each of these batches is also cached in DRAM,
where it is sorted and indexed in key order.

The segment (segio) writer (Figure 4) subscribes to two
event streams. One contains a list of sequence numbers
that have been persisted to NVRAM; the other contains
patches, index-ordered data that is annotated with sequence
numbers. The segment writer enforces write-ahead logging
by ensuring that indexes are not written to segments until
after the corresponding sequence numbers are persisted to
NVRAM.

Patches are analogous to levels or components in other
LSM-Tree implementations, and describe differences between
the previous version of the pyramid and the new one. We
track key ranges and sequence numbers for each patch. Merge
operations combine patches with contiguous sequence num-
bers, and flatten operations replace old patches with the
newly merged ones.

The implementation of merge and flatten are idempo-
tent, allowing everything below the top level of the pyra-
mid to be implemented in a lock-free fashion. Further-
more, merge and flatten operations are always safe, ensur-
ing that index maintenance is deadlock free, and simplify-
ing recovery from failures during in-progress merge opera-
tions. LSM-Tree merge strategies are covered in detail else-
where [10,35,39,41,44,47,51]; we refer readers to those dis-

cussions for more information about LSM-Tree algorithms
and implementations.

In addition to the medium table and elide tables described
below, important Purity tables include the segment table,
deduplication tables, and link tables that manage relation-
ships between segments for garbage collection.

4.9 Metadata layout
Purity stores metadata in tables that are compressed using

formats similar to those used in column stores [1, 33, 50].
Each page has a “dictionary” header used to compress or
decompress the tuples in the page. The dictionary has an
entry for each tuple field that contains bases b0, . . . , bB−1

and a width W for the offset from the base encoded in each
tuple. A tuple value v = bx + o is then encoded as 〈x, o〉,
where b is a dlgBe-bit integer and o is a W -bit integer.
Note that W can be 0, as can dlgBe. This encoding is a
highly efficient variant of run length encoding, allowing us
to include extra fields that aren’t needed: as long as their
value is the same for every tuple, the extra fields take up no
space. Another advantage is that the system can scan a page
for a particular value without decompressing the tuples, all
of which are the same length in bits. Instead, we treat the
page as a bit stream and look for a particular bit pattern
based on the compressed representation at the appropriate
offset from the start of each tuple.

As a special case, Purity also implements extremely effi-
cient range encoding schemes. These are used to bound the
size of the elide tables.

4.10 Elision
Most LSM-Trees implement delete by inserting tombstone

records into the tree. Tombstone records contain the key of
the record to be deleted. Upon encountering a tombstone,
LSM-Trees lookups ignore any older tuples with the same
key. When tombstones reach the oldest level of the tree
they can be discarded.

Purity takes a different approach. Each table has a set of
elide rules associated with it, which refer to a set of elision
tables, and explain the table’s deletion policy. Typical ta-
bles have a single elision table, which is indexed by an auto
increment key or sequence number. Tuples in this table rep-
resent deletion predicates, and Purity treats all tuples that
match the predicate as though they have been deleted. Un-
like tombstones, elide records do not need to be keyed in the
same way as the table.

Mediums are the motivating example for elision: to drop
all of the pages in a given medium, we simply insert a
single record into the appropriate elide table. Traditional
techniques, such as hierarchical locking [26] would obtain
medium-level locks. We wish to avoid such synchronization
primitives in Purity, since the data in question is accessed
using lock-free operations. Also, inserting an elide record is
much less expensive than deleting one cblock at a time.

As with all other tuples in Purity, elide records are im-
mutable facts. Elide operations are idempotent and do not
need to be protected by a locking protocol. Requests read
the base data as normal. In circumstances in which they
must return failure if the records have been deleted, they
query the elide table for predicates that match the records
they are about to return, and filter their results accordingly.
Such readers simply read immutable data, and do not need
to acquire locks or synchronize with other threads.

Purity’s garbage collector understands elide records, and
consults elide tables as part of the merge process. Tuples
that have been deleted are immediately dropped. This al-
lows space to be reclaimed more quickly than tombstone-
based approaches, which must wait for the tombstone to
propagate to the level that stores the data to be deleted.
Timely space reclamation is important, because it allows us
to immediately begin reclaiming segments after snapshots
and other large structures have been dropped. This reduces
the risk of deadlock due to running out of space inside the
garbage collector.

However, it leaves us with a new problem: We must make
sure that elide records do not accumulate over time, per-
manently leaking space. Rather than introduce another
deletion mechanism, we encode elide records as ranges, and
merge contiguous ranges. In the worst case, this forces us
to store one range for every elide tuple. Since we use dense,
monotonically increasing numbers as the keys for elide ta-
bles, the ranges collapse rapidly, preventing the elide ta-
bles from growing without bound. Moreover, the number
of elide ranges can be no larger than the number of valid
tuples, which itself is limited by the amount of physical or
logical storage in the system, depending on the table. Since
we never reuse sequence numbers, there is never a need to
remove an elide record to allow new records to be written.

5. CUSTOMER DEPLOYMENTS
In Section 2, we contrasted Purity’s design goals with

those of state-of-the-art performance disk systems. Here, we
talk about real-world deployments of Purity, and compare
to currently deployed solutions.

Although an alpha version of Purity began shipping in
2010, it began to hit critical mass in 2013 and 2014. At that
point, Purity had mature support for the most important
enterprise storage features.

5.1 Reliability
We sell service plans that include continuous health and

telemetry monitoring of customer arrays, as well as installa-
tion services for failed components. In areas with sufficient
customer density, our operations team offers customers a
four hour hardware replacement SLA.

When an array phones home with a hardware failure, we
dispatch a technician to pick up the necessary replacement
equipment from a local warehouse, arrive at the customer
site, and install the part.

Telemetry data provides us with detailed insights into cus-
tomer workloads, including I/O request rates, request sizes,
volume sizes, and deduplication ratios. We do not expose
tuning knobs to customers. Instead, if a Purity array’s per-
formance begins to degrade, we perform a root cause anal-
ysis (remotely, or on site), and contact the customer before
taking action to mitigate the problem. Along with Purity’s
architecture, this proactive approach to array maintenance
has led to 99.999% availability across our customers’ pro-
duction arrays.

For example, a bug in our garbage collection routines was
causing suboptimal deduplication performance at a few of
our customer sites. We detected the issue, patched and val-
idated a new version of Purity, and then contacted the im-
pacted customers so they could install the patch at a time
that minimized the risk of disruption to their production
applications.

SSDs are much more reliable than we anticipated. At
this point, Purity arrays have replaced hundreds of EMC
VMAX installations. Across all Purity installations, only
two SSDs have failed. Of course, this number will increase
over time, but the chances that a Purity array will encounter
a failed drive are extremely low. Instead, components such
as fans and DIMMs account for the lion’s share of hardware
replacement calls.

Unlike hard disks, which fail catastrophically, SSDs simply
begin losing pages as they age. Even this is rare, as most
enterprise workloads are read heavy, and typical customers
never approach the P/E ratings of the consumer MLC drives
we sell. We are confident enough in this statement to offer
free SSD replacements to customers that actually manage
to wear out SSDs in arrays covered by support contracts.

In the process of validating Purity, we built an array out
of worn-out flash. We first used synthetic data to overwrite
drives until they reached their rated number of P/E cycles.
Next, we formatted the drives using Purity, and ran stress
tests against the resulting system. We did not encounter
any application-level hardware errors in this test.

In addition to all of the error correction techniques that
Purity employs, it periodically scrubs the underlying storage
to proactively detect data loss. Worn-out flash leaks charge
faster than new flash, and P/E ratings are calculated under
the assumption that the SSD will be powered off for a year.

Periodically scrubbing and rewriting data ensures that the
worn-out flash is rewritten more frequently than the P/E
calculations assumed, allowing our arrays to run well past
rated wear out. In practice, we do not let customer arrays
reach such a state, and instead, proactively replace the few
worn SSDs we encounter in production.

5.2 Database deployments
Our customers routinely deploy databases atop our arrays,

and we have published detailed descriptions of reference in-
stallations of popular options, including Oracle, SQL Server
and MongoDB. At the high end, customers deploy parallel,
shared-disk database solutions such as Oracle RAC against
one of our arrays. However, it is much more common for
customers to deploy dozens or even hundreds of indepen-
dent database instances on top of each Purity array.

Instead of recapping details about these installations, we
discuss the implications of all-flash arrays on well-known
database performance models.

5.2.1 Transaction rollback rates
Stateless clients scale linearly with request latencies and

parallelism. Typical Purity latencies are 1
10

those of disk
based solutions, reducing the number of concurrent requests
customer compute boxes must track. Similarly, Purity pro-
vides much higher throughput than disk-based systems, al-
lowing more requests to be processed per unit time. Taken
together, these effects can significantly reduce memory us-
age on modern database application servers. However, such
servers run stateless applications, and are typically compute
bound.

Contrast the case of stateless servers with database trans-
actions, which must roll back in the face of conflicts. As
latencies increase, so too does transaction concurrency and
runtime, increasing the probability of transaction rollbacks.
It is well known that these effects lead to non-linear increases
in rollback rates [25].

1s 10s 30s 1m 5m 10m 30m 1h 1d 1w 4w 1yr

Access Frequency

0.1

1

10
R

e
la

ti
v
e
 c

o
st

1x - No reduction
4x - RDBMS
10x - MongoDB
Hard disk
ECC DIMM

Figure 7: The relative cost of storing data in Purity
arrays, disk arrays and main memory. Data reduc-
tion significantly changes the tradeoffs between disk,
flash and RAM.

A number of mitigating techniques exist, including run-
ning transactions at lower consistency levels, rewriting ap-
plications from scratch without transactions, and purchasing
extremely expensive database licenses.

We frequently encounter customers facing this dilemma,
and offer an alternative solution: Purity decreases request
latencies by an order of magnitude, potentially reducing roll-
back rates by more than 10×. In practice, this allows cus-
tomers to avoid upgrading to more complicated database
infrastructure, or even to migrate from proprietary solu-
tions to simpler open source systems such as Postgres and
MySQL.

Interestingly, these effects cause customers to underesti-
mate Purity’s potential throughput improvements. For in-
stance, given a production database running at 60% CPU
time and 40% I/O wait time, one would not expect more
than a doubling of throughput due to storage improvements.
In contrast, replacing disk-based storage with Purity often
leads to speedups closer to 10× in such scenarios.

5.2.2 The five minute rule
The database literature is well-poised to answer another

common customer concern: Given the rapid changes to stor-
age hardware, what should we purchase?

The “five minute rule” provides a rule of thumb for pro-
visioning storage systems [24]. Traditionally, data accessed
more often than once every five minutes belonged in RAM,
and colder data belonged on disk.

The cost of storing data can be divided into the price of
the capacity the data occupies, and the price of the device
time it takes to transfer the data to storage. Small, fast
devices, like RAM are a good fit for hot data, and large,
slow devices are better for cold data.

Using Table 1, and information from customer deploy-
ments, we computed relative costs for Purity and hard-disk
arrays: Typical Purity deduplication ratios are 3–8× for
relational databases and 10× for document stores such as
MongoDB. I/Os are 55 KiB on average. We assume a price
of $1000 for 64 GiB of ECC LR-DIMM RAM.

Based on the results in Figure 7, we present the following
rules of thumb:

1. Performance disk is dead.
2. Without data reduction, store everything you can afford

to lose in RAM (or non-redundant direct attached disks).

3. With data reduction, never cache data that is accessed
less frequently than every half hour. It is cheaper to store
it in fault tolerant storage than RAM.

4. Important data follows a ten-minute rule: For data colder
than that, the cost of the second cached copy is compa-
rable to the cost of accessing the storage.

With Purity, it makes sense to move warm data from RAM
to persistent storage, reducing the amount of RAM neces-
sary to support a given set of compute nodes. This has
second-order benefits. High-density, low profile DIMMs are
roughly 50% more expensive than physically larger models.
Reducing memory capacities can allow customers to pur-
chase less expensive processors with fewer memory channels,
and to fit more machines into a given number of rack units.
These effects increase the incremental cost of storing data
in RAM in ways we ignored in our computation.

5.3 Virtualization environments
Virtualization is another common use case for Purity, and

can be divided into two classes of workloads: server and
desktop virtualization. Server virtualization allows compa-
nies to reduce the number of physical machines required
to service their backend infrastructure, and has side bene-
fits, such as facilitating hardware upgrades and centralizing
backup and other storage management tasks.

Customers often run hundreds or thousands of virtual
machines atop a single Purity array. Many are database
servers, while others run database applications, mail servers,
file servers and other such services. Typical deduplication
ratios for these systems are 5–10×.

Scale-out database applications are commonplace, and typ-
ically run atop stateless clones of the same operating system
image. Purity can efficiently clone such instances. Alterna-
tively, as updates are rolled out to the cloned images, Pu-
rity aggressively deduplicates data modified by the updates.
Effects such as these sometimes lead to much higher dedu-
plication rates.

We see similar effects with virtual desktop deployments
that manage thousands of similar virtual machine images,
which are in turn used to power cash registers, terminals,
and standardized software environments. Depending on the
exact use case, it is possible to achieve deduplication ratios
in excess of 20× with such workloads.

5.4 Cloud service providers
Section 2.3 estimates storage requirements of large scale-

out storage installations, and concludes that Purity arrays
and scale-out performance storage clusters have comparable
capabilities at drastically different price points. Indeed, we
have begun selling Purity arrays to cloud service providers.

Our customers report data center footprint reductions on
the order of 40% when moving from spinning disk to Pu-
rity, with the majority of the remaining footprint allocated
to compute nodes. Client-visible request latencies improve
dramatically, as does throughput. In a representative de-
ployment, virtual machine provisioning times went from nine
minutes to forty five seconds (12× faster), and the customer
plans to back 500 relational database instances with a single
FA-420 array.

Based on customer experiences and proof of concept in-
stallations, we have found that an eight-rack-unit Purity ap-
pliance provides service providers with similar capabilities as
160 rack units of white-box OpenStack storage nodes. This

is similar to the footprint reductions reported by our cus-
tomers, as well as the estimates we presented in Section 2.3.

Cloud service providers resell fractions of Purity arrays
to customers that ultimately provision their own resources.
Purity includes automation tooling that is appropriate for
this task, and has been certified to work well with the major
infrastructure stacks in use at cloud service providers. As
with our other use cases, customer-facing simplicity and us-
ability are major differentiators here. Providers resell Purity
storage to a large number of customers. To the extent that
the array automates performance tuning and provisioning,
providers can focus manpower on other tasks.

Similarly, data reduction leads directly to improvements
in the providers’ cost per gigabyte, allowing our customers to
charge rates comparable to their competitors’ non-redundant
cache storage rates.

In such environments, Purity’s tail latencies and 99.999%
availability have become key differentiators for cloud ser-
vice providers. These benefits translate directly to improved
application-level availability and performance, and cloud ser-
vice providers are able to charge a premium for this.

6. RELATED WORK
Purity builds upon an extremely large body of related

work, including LSM-Trees and other sorted [2,10,13,39,40,
44,51], and unordered indexes [5, 37,43].

Gupta, et al. use flash for content-addressable storage
in a way that improves locality [30]. We do this for our
index. While interesting, memory optimized indexes such
as SILT have write amplifications that are too high for our
purposes [41]. Debnath has published a number of other
interesting small-memory flash structures [21–23]. Salus is
another flash optimized persistent block store [57].

There are a large number of scale out distributed systems;
we mention a few that target high performance workloads
and modern storage hardware here. FAWN takes the op-
posite approach as Purity, and uses extremely inexpensive
servers to build scale out flash storage [6]. Similarly, RAM-
cloud targets main-memory scale-out storage [49]. Like Pu-
rity, its implementation makes heavy use of logs and se-
quence numbers. Strata is another system in this cate-
gory [17].

A number of key-value workload studies provided us with
insight into scale-out storage performance [7, 16].

Our use of sequence numbers for consistency is reminiscent
of the approach taken in Corfu, which implements a large,
high-throughput distributed flash log [8]. Tango [9] layers
persistent data structures atop this simple primitive.

We were informed by insights from a wide range of studies
of flash hardware limitations. Flash performance is known to
degrade in the face of random writes [29,43]. Purity already
uses horizontal and vertical erasure coding [38]; over time,
we expect flash densities to increase at the expense of error
rates, and adaptive techniques that handle variable error
rates will probably be necessary [27,28].

Chen, et al. found that coalescing writes extends flash
lifetime [14]. We do so in our compression, deduplication
and garbage collection algorithms, and use SLC SSDs (our
“NVRAM”) to absorb low latency writes that we cannot
coalesce. Deferred writes have been applied elsewhere [20].

Deduplication studies show that, depending on workloads,
whole-file deduplication performs well [42]. However, we tar-
get virtual machine deployments which are known to provide

opportunities for deduplication [36], and therefore perform
block-level deduplication. It is well known that database
workloads compress well [34], and we use techniques from
the column store compression literature [1, 33].

7. CONCLUSION
We have presented Purity, the first all-flash enterprise

storage system to support compression, deduplication and
high-availability. Hardware trends are disrupting existing
storage system architectures, and enabling rapid consolida-
tion of existing storage infrastructure as well as new classes
of applications.

Purity leverages these trends, and a wide body of work
from the literature to provide applications with order of
magnitude performance and density improvements at com-
parable or lower cost per gigabyte than existing systems.

8. ACKNOWLEDGMENTS
Purity is the work of the entire Pure Storage team. Our

conversations with Chas. Dye about customer deployments
were invaluable, as were Costa Sapuntzakis’s descriptions of
Purity. Thanks to Marco Sanvido for the description and
motivation for frontier sets, which were developed by Marco
Sanvido, Rich Hankins, Nidhi Doshi and Huihui Cheng. We
thank our shepherd, Carlo Curino, and Christopher Douglas
for their feedback on earlier drafts of this work.

9. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. In Proc. SIGMOD Conf., pages 671–682, 2006.

[2] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and
S. Singh. Lazy-adaptive tree: An optimized index structure
for flash devices. In Proc. 35th VLDB Conf., Aug. 2009.

[3] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak.
Consistency analysis in Bloom: a CALM and collected
approach. In Proc. CIDR, pages 249–260, 2011.

[4] T. J. Ameloot and J. Van den Bussche. Positive Dedalus
programs tolerate non-causality. Journal of Computer and
System Sciences, 80(7):1191–1213, 2014.

[5] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and
S. Nath. Cheap and large CAMs for high performance
data-intensive networked systems. In Proc. 7th NSDI
Symp., 2010.

[6] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. In Proc. 22nd SOSP Conf., pages 1–14, Oct. 2009.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In Proc. 2012 SIGMETRICS, pages 53–64, 2012.

[8] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,
M. Wei, and J. D. Davis. CORFU: A shared log design for
flash clusters. In Proc. 9th NSDI Symp., Apr. 2012.

[9] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: Distributed data structures over a shared
log. In Proc. 24th SOSP Conf., pages 325–340, Nov. 2013.

[10] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R.
Fogel, B. C. Kuszmaul, and J. Nelson. Cache-oblivious
streaming B-trees. In Proc. 19th Symp. on Parallel
Algorithms and Architectures, pages 81–92, 2007.

[11] E. A. Brewer. Lessons from giant-scale services. IEEE
Internet Computing, 5(4):46–55, Aug. 2001.

[12] M. Burrows, C. Jerian, B. Lampson, and T. Mann. On-line
data compression in a log-structured file system. In Proc.
5th ASPLOS, pages 2–9, Oct. 1992.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In Proc. 7th OSDI Symp., Nov. 2006.

[14] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-aware
flash translation layer enhancing the lifespan of flash
memory based solid state drives. In Proc. 9th FAST Conf.,
Feb. 2011.

[15] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted data
serving platform. In Proc. 34th VLDB Conf., Aug. 2008.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proc. 1st ACM Symp. on Cloud Computing, 2010.

[17] B. Cully, J. Wires, D. Meyer, K. Jamieson, K. Fraser,
T. Deegan, D. Stodden, G. Lefebvre, D. Ferstay, and
A. Warfield. Strata: High-performance scalable storage on
virtualized non-volatile memory. In Proc. 12th FAST Conf.,
Feb. 2014.

[18] J. Dean. Designs, lessons and advice from building large
distributed systems. Keynote from LADIS, 2009.

[19] J. Dean and L. A. Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[20] B. Debnath, M. F. Mokbel, D. J. Lilja, and D. Du. Deferred
updates for flash-based storage. In Proc. 26th IEEE Conf.
on Mass Storage Systems and Technologies, 2010.

[21] B. Debnath, S. Sengupta, and J. Li. ChunkStash: Speeding
up inline storage deduplication using flash memory. In Proc.
2010 USENIX Annual Technical Conference, June 2010.

[22] B. Debnath, S. Sengupta, and J. Li. FlashStore: High
throughput persistent key-value store. In Proc. 36th VLDB
Conf., Sept. 2010.

[23] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM
space skimpy key-value store on flash-based storage. In
Proc. SIGMOD Conf., 2011.

[24] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. ACM Sigmod
Record, 26(4):63–68, 1997.

[25] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proc. SIGMOD Conf.,
pages 173–182, June 1996.

[26] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.
Granularity of locks and degrees of consistency in a shared
data base. In Proc. IFIP Working Conf. on Modelling in
Data Base Management Systems, pages 365–394, 1976.

[27] K. M. Greenan, D. D. Long, E. L. Miller, T. J. E. Schwarz,
S.J., and A. Wildani. Building flexible, fault-tolerant
flash-based storage systems. In Proc. 5th Workshop on Hot
Topics in System Dependability, June 2009.

[28] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak
future of NAND flash memory. In Proc. 10th FAST Conf.,
Feb. 2012.

[29] L. M. Grupp, J. D. Davis, and S. Swanson. The harey
tortoise: Managing heterogeneous write performance in
SSDs. In Proc. 2013 USENIX Annual Technical
Conference, June 2013.

[30] A. Gupta, R. Pisolkar, B. Urgaonkar, and
A. Sivasubramaniam. Leveraging value locality in
optimizing NAND flash-based SSDs. In Proc. 9th FAST
Conf., Feb. 2011.

[31] J. Hamilton. Why scale matters and why the cloud is
different. AWS re:Invent, 2013.

[32] J. Hamilton. AWS innovation at scale. AWS re:Invent, 2014.

[33] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt.
How to barter bits for chronons: compression and
bandwidth trade offs for database scans. In Proc. SIGMOD
Conf., pages 389–400, 2007.

[34] B. R. Iyer and D. Wilhite. Data compression support in
databases. In Proc. 20th VLDB Conf., pages 695–704, 1994.

[35] C. Jermaine, E. Omiecinski, and W. G. Yee. The
partitioned exponential file for database storage
management. Proc. VLDB Endowment, 16:417–437, 2007.

[36] K. Jin and E. L. Miller. The effectiveness of deduplication
on virtual machine disk images. In Proc. SYSTOR 2009,
May 2009.

[37] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS:
A file system for virtualized flash storage. ACM Trans. on
Storage, 6(3), Sept. 2010.

[38] Y. Kang and E. L. Miller. Adding aggressive error
correction to a high-performance compressing flash file
system. In Proc. 9th ACM & IEEE Conf. on Embedded
Software (EMSOFT ’09), Oct. 2009.

[39] LevelDB: A fast and lightweight key/value database library
by Google. https://code.google.com/p/leveldb/.

[40] Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on flash
disks. In Proc. 25th Int’l Conf. on Data Engineering, 2009.

[41] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT:
a memory-efficient, high-performance key-value store. In
Proc. 23rd SOSP Conf., Oct. 2011.

[42] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. In Proc. 9th FAST Conf., Feb. 2011.

[43] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS:
Random write considered harmful in solid state drives. In
Proc. 10th FAST Conf., Feb. 2012.

[44] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33:351–385, 1996.

[45] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming
fast Galois field arithmetic using Intel SIMD instructions.
In Proc. 11th FAST Conf., Feb. 2013.

[46] Pure Storage reference architecture for Oracle databases,
2014.

[47] RocksDB: A fork of LevelDB by Facebook.
https://github.com/facebook/rocksdb/.

[48] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Trans. on Computer Systems, 10(1):26–52, Feb. 1992.

[49] S. M. Rumble, A. Kejriwal, and J. Ousterhout.
Log-structured memory for DRAM-based storage. In Proc.
12th FAST Conf., Feb. 2014.

[50] R. Sears, M. Callaghan, and E. Brewer. Rose: Compressed,
log-structured replication. In Proc. 34th VLDB Conf.,
pages 526–537, Aug. 2008.

[51] R. Sears and R. Ramakrishnan. bLSM: A general purpose
log structured merge tree. In Proc. SIGMOD Conf., pages
217–228, May 2012.

[52] D. J. Sheehy and D. Smith. Bitcask. a log-structured hash
table for fast key value data. Technical report, Technical
report, Basho Technologies, 04 2010, 2010.

[53] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and
C. Bornhövd. Efficient transaction processing in SAP
HANA database: the end of a column store myth. In Proc.
SIGMOD Conf., pages 731–742, 2012.

[54] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti.
iDedup: Latency-aware, inline data deduplication for
primary storage. In Proc. 10th FAST Conf., Feb. 2012.

[55] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki.
Evaluating and repairing write performance on flash
devices. In DaMoN, pages 9–14, June 2009.

[56] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: a column-oriented DBMS. In Proc. 31st VLDB
Conf., pages 553–564, 2005.

[57] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan,
J. Kirubanandam, L. Alvisi, and M. Dahlin. Robustness in
the Salus scalable block store. In Proc. 10th NSDI Symp.,
pages 357–370, 2013.

[58] H. Yadava. The Berkeley DB Book. Apress, 2014.

