
CAPES: Unsupervised Storage Performance Tuning Using
Neural Network-Based Deep Reinforcement Learning

Yan Li

University of California, Santa Cruz

yanli@ucsc.edu

Kenneth Chang

University of California, Santa Cruz

kchang44@ucsc.edu

Oceane Bel

University of California, Santa Cruz

obel@ucsc.edu

Ethan L. Miller

University of California, Santa Cruz

Pure Storage

elm@ucsc.edu

Darrell D. E. Long

University of California, Santa Cruz

darrell@ucsc.edu

ABSTRACT
Parameter tuning is an important task of storage performance

optimization. Current practice usually involves numerous tweak-

benchmark cycles that are slow and costly. To address this issue,

we developed CAPES, a model-less deep reinforcement learning-

based unsupervised parameter tuning system driven by a deep

neural network (DNN). It is designed to �nd the optimal values

of tunable parameters in computer systems, from a simple client-

server system to a large data center, where human tuning can be

costly and often cannot achieve optimal performance. CAPES takes

periodic measurements of a target computer system’s state, and

trains a DNN which uses Q-learning to suggest changes to the

system’s current parameter values. CAPES is minimally intrusive,

and can be deployed into a production system to collect training

data and suggest tuning actions during the system’s daily operation.

Evaluation of a prototype on a Lustre �le system demonstrates an

increase in I/O throughput up to 45% at saturation point.

CCS CONCEPTS
• Information systems → Storage management; Distributed
storage; • Computing methodologies → Neural networks;

KEYWORDS
performance tuning, deep learning, q-learning

ACM Reference format:
Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long.

2017. CAPES: Unsupervised Storage Performance Tuning Using Neural

Network-Based Deep Reinforcement Learning. In Proceedings of SC17, Den-
ver, CO, USA, November 12–17, 2017, 14 pages.

DOI: 10.1145/3126908.3126951

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

SC17, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5114-0/17/11. . . $15.00

DOI: 10.1145/3126908.3126951

1 INTRODUCTION
Performance tuning is a common task where human experts ana-

lyze a system’s historical and real-time performance indicators, and

tweak values of parameters in order to increase certain performance

metrics for running certain workloads. Tuning is challenging for a

variety of reasons: First, the e�ect of adjusting a system’s parameter

can be in�uenced by factors such as system hardware, operating

system, and running workloads. This correlation of variables makes

predicting the e�ects of changes di�cult at best, at worst humans

may not have a clue what might happen if something were to

change in a complex system. This issue arises from the fact that

computers are nonlinear systems and there is no known method for

quantifying and modeling a complex system to the level of precision

required by performance tuning; in practice, all performance tuning

has to be done on the actual system. Second, the delay between

an action and the resulting change in performance makes it even

harder to correlate the relationship between system input and out-

put. Third, the available parameter space is huge, often including

thousands of parameters and each parameter can take a wide range

of values. Humans can only propose and evaluate a few commonly

accepted parameter values derived from past experience, and they

tend to reuse those same values across many systems for simplicity,

leaving a larger, more diverse, parameter space unexplored. Fourth,

assigning human experts to monitor dynamic workloads 24x7 is

simply too costly in practice.

In machine learning practice, we can approach this problem as

a game where the goal is to �nd an appropriate setting that will

render the system more e�cient. By observing some indicators

in the system, the player can maximize a cumulative performance

reward such as energy usage, operations per second, or data transfer

throughput. Recent advancements in machine learning showed that

Deep Reinforcement Learning (DRL) can perform unsupervised

learning well on diverse data featuring long delays between action

and reward [21]. Many techniques are being used in tandem to make

this possible, such as Deep Q-learning and experience replay [19].

We developed CAPES (Computer Automated Performance En-

hancement System) and demonstrated that it can increase the

throughput of the Lustre high performance storage system [22] up

to 45% under heavy workloads. The training is online and requires

around 12 to 24 hours, which can be done during the system’s daily

operation. This is a signi�cant increase in e�ciency, especially for

large and expensive system installations.

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

In comparison to earlier automatic tuning systems, CAPES has

several advantages:

• It requires no prior knowledge of the target system.

• It requires little change to the target system and little down-

time for setting up.

• It can run continuously to adapt to dynamically changing

workloads.

• It can dynamically choose optimal values for parameters

that used to be set statically.

2 BACKGROUND
Automatic Performance Tuning. Modern computer systems are

highly complex and often have many tunable parameters to accom-

modate a wide range of workloads. Such parameters can include the

number of worker threads, inbound/outbound bu�er sizes, conges-

tion window size, packet size, etc. All �eld engineers know that the

di�erent in performance for a customer’s workload can be promi-

nent before and after tuning. It is in the user’s best interest to keep

high cost systems, such as data centers or supercomputers, running

at peak performance. Smaller enterprise computing systems can

also see a considerable performance boost when parameters are

tuned to values that best suit the user’s environment.

Fine tuning a computer system is considered to be a form of

art that requires extensive knowledge and experience, thus this

service is often limited to a few high-paying customers. Often, for a

service provider, there are simply not enough domain experts that

understand all the quirks of a product. Most users simply have to

fall back to following an in�exible, untailored performance tuning

guide. Even for experts, a lengthy trial-and-error process is needed

to obtain enough understanding about the customer’s workloads,

and this process can last weeks to months.

Yet even with the best experts, it is nigh impossible to achieve

optimal performance. Using static parameter values is not ideal

for handling dynamic workloads. Depending on how the system

is used, workloads can change over time or be cyclical, but they

rarely stay stable. The best a human expert can do is to come

up with several sets of optimal setting values for several typical

workloads at a coarse grade, and allowing the system to pick a

set of values when a certain condition is detected, hoping these

sets can cover most of the customer’s workloads. It is prohibitively

expensive and time consuming to �nd optimal values for all possible

workloads. In addition to this di�culty, it would be very hard to

exhaustively test all possible combinations of parameter values even

for a static workload. Furthermore, modern systems may behave

di�erently under peak tra�c. When systems are pushed to the

limit, the e�ciency of many components can drop rapidly. This

phenomenon is usually called “congestion collapse”, and it is a

common curse among network and storage researchers.

In all, it is clear that the existing, human driven, tune-benchmark-

tune cycle does not �t the evolving nature and scalability of new

technology. An automated hands-free solution to performance tun-

ing is ever more important in an era of widespread high perfor-

mance computing.

The Challenge of Parameter Tuning. Parameter tuning focuses

on �nding optimal parameter values that make a target system

or application perform better. Better performance usually means

lower energy consumption, higher throughput, lower latency, or

an objective function that combines these.

Automated parameter tuning faces several challenges in practice:

(1) No high-precision model has been successfully constructed

for a complex distributed system.

(2) Workloads are often dynamic and a�ect each other.

(3) The parameter space can be large, and sweeping through

the entire space would be prohibitively slow.

(4) Tuning has to be responsive: when the workloads change,

the system should also adjust quickly.

(5) Distributed systems can be large and the tuning system

has to be extremely scalable.

(6) Tuning for multiple objectives should be possible, such as

tuning for throughput and latency at the same time.

Theoretically, automatic dynamic parameter tuning can be con-

structed as a Decentralized Partially Observable Markov Decision

Process (POMDP), and Bernstein et al. have proven that it is a NEXP-

hard problem [5]. A perfect tuning system would need access to

information of the entire history of observations, including the start

times of all previous system resource requests, their �nish times,

and the start times of all future requests; this is simply impossible

to construct in practice. Therefore, all existing tuning approaches

have adopted some sort of approximation in their policies.

Designing these policies is inherently di�cult because there is

no known method that can perfectly establish the cause and e�ect

between a tuning action taken and the system’s reaction. First, the

delay between applying a modi�cation and its consequences makes

it di�cult to say whether a performance increase was due to a

recent modi�cation, or the e�ects of a modi�cation done several

minutes prior. Second, the delays could vary in length, and the

length itself could be a�ected by the system, the workload, and

many other factors. Third, any improvements measured could be

the e�ects of several modi�cations taken in a speci�c order, which

could be di�cult to trace back. This is commonly known as the

“Credit Assignment Problem” [26].

Hyperparameters. In the machine learning community, the pa-

rameters of machine learning algorithms are referred to as hyperpa-

rameters [6] to distinguish them from the parameters of the target

system. Hyperparameters can greatly a�ect the e�ciency of the

machine learning algorithm, and need to be chosen carefully. Com-

mon methods for hyperparameter optimization include Bayesian

optimization, random search, and gradient-based optimization [10].

Q-learning. Reinforcement Learning (RL) [26] is a branch of ma-

chine learning concerned with how an agent ought to take actions

within an environment in order to maximize a certain reward. Rein-

forcement learning has seen successes in many areas, from robotics

to game play [20]. An environment can be modeled as a stochastic

�nite state machine with inputs (actions) and outputs (observation

and reward). The interaction between the environment and the

agent is usually constructed as a Markov Decision Process (MDP)

because the outcomes are partly random and partly under the con-

trol of the agent.

In the context of CAPES, we treat the target system as the en-

vironment. The tuning module is added to the environment as an

agent, which observes the state of the target system. Actions are

CAPES SC17, November 12–17, 2017, Denver, CO, USA

then calculated by the tuning module and issued to the target sys-

tem to carry out. We use the output of an objective function, whose

input is the target system’s performance, as the reward. Using an

objective function provides the �exibility to tune the system for one

or more objectives. The agent’s goal is to �nd a policy to maximize

the expected sum of all future rewards. Let rt be the reward we

expect at time t , the expected sum of future rewards at time t can

be expressed as:

Rt =
n∑
i=t

ri

Because of the random nature of the process, the further into the

future we predict, the less precise the prediction becomes. Thus,

it is better to discount future rewards so they are less important

than immediate rewards. Also the workload could change, making

current modi�cations possibly ine�ective. Let γ be the discount

rate, the new expected sum of the rewards is:

Rt =
n∑
i=t

γ i−t ri

Let st be the system’s state and at be an action at time t . Assum-

ing we continue optimally from time t , we de�ne an action-value

functionQ(s,a) that represents the best expected sum of reward we

can get. This is also why this method is referred to as Q-learning:

Q(st ,at) = max

π
Rt+1

Here π represents the policy that dictates what action to choose in

each future decision step.

If function Q exists, the decision making step can be written as:

π (s) = max

a
Q(s,a)

Bellman proved that Q can be solve iteratively for any action a′

at state s ′:

Q(s,a) = r + γ max

a′
Q(s ′,a′)

This is the Bellman equation [26]. It is one solution to the credit

assignment problem because iteratively solving this equation does

not require the delay between action and reward to be known.

Solving the Q-function is the core task of Q-learning. Because the

state space is usually prohibitively large, generalizing from known

experience is important, and a nonlinear action-value function

approximator is often used to express the Q-function, such as a

neural network. Recent advances in deep neural networks (DNN) [4,

21] have shown that it can e�ectively learn concepts directly from

raw sensory data. DNN employs several layers of neurons to build

up progressively more abstract representations of the data. When

DNN is used to approximate the Q function it is often called a

Q-network, and its weights are often referred to as θ .

However, reinforcement learning is known to be unstable or

even diverge when a nonlinear function approximator is being used.

Many techniques have been developed to solve these challenges.

Of these, experience replay is one of the most important methods.

Experience Replay. The transitions of states, actions, and rewards

received from each step can be kept in a database so that we can

replay these experiences later in di�erent orders to break tempo-

ral correlation introduced by traditional training process that uses

sequential system status. This kind of training is for over�tting

prevention and is generally referred to as experience replay [19].

During a training step i , we randomly pick samples from the data-

base and pack them into a minibatch (D). Thus, the goal of the

training step is to adjust θi to reduce the average mean-square

error in the Bellman equation for samples within the minibatch:

Li (θi) = ED [(ri + γ max

a′
Q(s ′,a′;θ−i) −Q(s,a;θi)

2] (1)

Target Network. Another important technique that helps the

DNN to converge is using a target network [21]. AnotherQ-network

of parameter, θ−i , is used to approximate the optimal target value,

and this network is called the target Q-network. We can use two

methods to get the weights of the target network: getting the

weights from a previous iteration, or using a slowly updated Q-

network (the update rate has to be limited to a small value). Both

of these methods help reduce the chance of over�tting the network

to a speci�c workload.

Experience replay helps prevent over�tting, and limiting the

update rate of the target Q-network has proven to increase the

stability and e�ciency of the training process [21].

The Exploration-Exploitation Tradeo�. Because DNN-based re-

inforcement learning is often used in environments that have pro-

hibitively large state spaces or when the models are too hard to

construct, a Monte Carlo approximation is often used. We only

update the Q function for states that the agent has actually visited

in the environment, usually using a temporal di�erence method.

This means that for unseen states the Q function can only extrapo-

late from known experiences. Thus, it is important for the agent to

“experience” as many states as possible during the training process

(exploration). During the initial exploration process, we usually

generate random actions to explore as many states as possible.

However, in a complex environment, performing totally random

actions usually would not take the agent far. A standard practice is

to initially use a mix of random and DNN-calculated actions, and

gradually increase the chances of taking a calculated action further

into the training process.

3 ALGORITHM
Figure 1 shows the architecture of CAPES and illustrates one possi-

ble way to use CAPES with a target system that contains several

servers and application nodes. CAPES assumes little of the target

system and only requires an interface to periodically extract states

of the system and a way to change parameter values. The architec-

ture shown in Figure 1 is not meant to limit how the system can be

deployed. For instance, if the sampling of performance indicators is

already implemented and the data is stored on a central monitoring

node, CAPES can tap into that information without the need to

deploy Monitoring Agents.

Each node has a Monitoring Agent and a Control Agent running

on them. The Monitoring Agents gather Performance Indicators

and Rewards from the target system’s nodes and send them to the In-

terface Daemon. Performance Indicators are system measurements

that are related to the system’s operating status (§ 3.1). Rewards

vary based on current tuning e�orts, and re�ect the successfulness

of the current tuning (§ 3.2). The Interface Daemon (§ 3.3) relays the

incoming Performance Indicators into the Replay Database (Replay

DB). The DRL Engine reads the Performance Indicators from the

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

App. node(s)

Applications

Control agent

Monitor agent

Replay DB

Checkpoints &
Control models

Interface
Daemon

Deep
reinforcement

learning engine

Control Node

Performance
Indicators

Control
actions

Server node(s)

Service programs

Control agent

Monitor agent

Target
system

CAPES

Action
checker

Figure 1: CAPES architecture. Solid blue lines represent the
�ow of performance indicators. Dashed red lines represent
the �ow of actions.

Replay DB to do training steps (§ 3.4). At a �xed interval, the DRL

Daemon sends back an Action via the Interface Daemon, which will

broadcast the action to the action’s targeted Control Agents. These

actions are also stored within the Replay DB, as part of Experience

Replay. Finally, the Control Agents make the appropriate changes

on the target nodes when actions are received (§ 3.7).

In a production environment, the Interface Daemon, Replay DB,

and DRL Engine can run on one or more dedicated nodes to prevent

interference with other nodes in the target system. For e�ciency,

the DRL Engine can be run on a separate node with a GPU for

faster DNN computation. This is strictly for performance gains. In

addition, the node that the Replay DB runs on should have plenty

of RAM, ideally to keep the whole database in memory.

3.1 Choosing Performance Indicators
Performance Indicators are important for tuning the system be-

cause DNN relies on analyzing them to understand how the system

is running. We should include system states that are related to the

metric we wish to tune. This is a feature selection problem, which

was deemed to be one of the most important steps for successfully

applying almost any machine learning algorithm. However, ad-

vances in DNN has rendered this step less important because DNN

is good at picking out useful data among noisy, raw inputs.

Therefore, we can be quite liberal on choosing performance

indicators; any system statuses that are likely related to the perfor-

mance of the system should be included. Both raw and secondary

system statuses, derived from raw system status, can be included.

Samples of raw system status include number of CPUs, CPU uti-

lization, free memory, separate read/write I/O rate of each storage

device, and bu�er size. Samples of secondary system status could

be the total number of active threads, which needs to be calculated

by counting the number of threads that are running.

All inputs to the Deep Neural Network should be converted into

�oating point numbers. This is easy for integers. Nonnumerical

statuses, such as which I/O scheduler the system is using and what

power status the system is in, should be converted into numerical

values, such as 0, 1, or 2. Examples of such could be 0 for a round

robin scheduler or 1 for a lottery scheduler.

System statuses that are accumulative in nature should generally

be excluded unless they are known to be related to system perfor-

mance. Such accumulative statuses include system uptime, total

sent/received bytes over the network, total read/write bytes of I/O

devices, etc. The rates of change of these statuses can be useful

for indicating a system’s operational status, but the total sums are

generally not useful. For instance, it is unlikely that the system’s

optimal settings should rely on how many bytes the system has

received since it started up.

Date and time should also be included if the workload is known

to be cyclical, such as many enterprise workloads, however we

should not include it as a single representation. Instead, it is easier

for the DNN to understand if we include the month, day of the week,

hour, and minute as separate performance indicators. By doing this,

the DNN can discover any relationship between changes in the

workload and the hour that it changed.

There may be a potential problem by picking too many perfor-

mance indicators, which may result in increased computational

cost. We can safely overlook this concern because the throughput

of a modern desktop GPU can o�set the increased computational

costs given that we do not grossly overload the system (see Table 2

for the measured training speed in the evaluation).

3.2 Reward
Reward plays an important role and guides the direction of the

whole tuning process. After performing each action on the target

system, CAPES measures an immediate reward. For instance, after

changing the congestion window size, we can measure the change

of I/O throughput at the next second to use it as the reward. Only

the immediate reward is necessary because there is no need to

worry about the delay between an action and a reward since the Q-

function will ultimately converge to the optimal oracle-like function

after iterative trainings, according to Bellman’s proof [26].

We use the output of an objective function as the reward. For

single-objective tuning, the objective function equals the tuning

objective measurement, such as throughput or latency. It is also

common to use an objective function that combines multiple objec-

tives, such as tuning for both higher throughput and fairness [17].

3.3 Monitoring Agents and The Interface
Daemon

A Monitoring Agent runs on each node that needs to be monitored.

At a predesignated sampling frequency, it collects Performance In-

dicators and sends them to the Interface Daemon for processing. We

call each of these actions a sampling tick. In order to minimize both

CPU utilization and network communication, we use a di�erential

communication protocol designed to only send out a performance

indicator when its data is di�erent from the value of the previous

CAPES SC17, November 12–17, 2017, Denver, CO, USA

sampling tick. In addition, all network communications are com-

pressed. If the target system uses di�erent networks for data and

control, the monitoring agents should use the control network to

communicate with the Interface Daemon.

The Interface Daemon is a lightweight daemon that receives

incoming messages from all Monitoring Agents. It also receives

suggested actions from the DRL Engine, and broadcasts them to the

Control Agents. Introducing the Interface Daemon into the system

has several bene�ts. First, it decouples the network communica-

tion code from other parts of the system code. Second, it is the

only component that needs to write to the Replay DB (the DRL

Engine only needs to read from it), greatly reducing the overhead

of locking the Replay DB. Third, this enables independent control

of the Monitoring Agent and the DRL Engine so we can choose to

do solely monitoring or training on demand.

3.4 Modeling and Training the Deep Neural
Network

Mathematically, the purpose of the training step is to minimize

the prediction error for the training data. Prediction error is the

di�erent between the neural network’s predicted performance after

observing the system’s status and the actual system performance

one second later. The prediction re�ects how “well” CAPES un-

derstands the target system, and a lower prediction error leads to

better tuning results. The Deep Reinforcement Learning (DRL) En-

gine retrieves uniformly random observations from the Replay DB

and feeds them into the deep Q-network for training (experience

replay). Because the performance indicators of one sampling tick

cannot re�ect the moving trend of these indicators, it is common to

use a stack of multiple consecutive snapshots in the DNN training

process [21]. Let di, j be the output of the objective function of node

i at time j, N be to total number of nodes, and S be the number of

sampling ticks. We construct the observation at time t as a matrix:

st =

��������
d1,t−S+1 d2,t−S+1 . . . dN ,t−S+1
d1,t−S+2 d2,t−S+2 . . . dN ,t−S+2
. .

d1,t d2,t . . . dN ,t

��������
A set of random observations from the Replay DB is packed

together as one minibatch and fed to the DNN trainer. Batching

minimizes data movement overhead between the main memory

and GPU memory, and is highly e�cient because all computation

can be done as matrix manipulation in the GPU.

The Q function can be parameterized using a neural network in

many ways that di�er in terms of the number, size, and type of hid-

den layers, and how the Q-value (e.g. the predicted reward) for can-

didate actions are calculated. There are primarily two methods for

calculating the Q-values: the �rst type maps an observation-action

pair to scalar estimates, and the second type maps an observation

to an array of Q-values of each action [21]. The �rst type requires

a separate forward pass to compute the Q-value of each candidate

action, resulting in a cost that scales linearly with the number of

actions. The main advantage of the second type is the ability to

compute Q-values for all possible actions in a given state with only

a single forward pass through the network. We have chosen the

second type for CAPES because of its lower computational cost.

Because the observations are �oating point numbers that repre-

sent system statuses and are usually not related by locality (adjacent

numbers in observations are not necessarily related), we choose

to use a multi-layered perceptron (MLP) network to construct the

DNN. MLP is a mature method that can learn to classify any linearly

separable and non-separable set of inputs. It can represent boolean

functions, such as AND, OR, NOT, and XOR, and can allow a user

to get approximate solutions for complex problems. In CAPES, we

use a standard two-hidden-layer MLP with a hyperbolic tangent

(tanh) nonlinear activation function. The two hidden layers are of

the same size as the input array. The �nal output layer is a fully-

connected linear layer with a single output for each valid action.

According to the Universal Approximation Theorem, a feedforward

network with a single hidden layer is enough to approximate any

mathematical function [12]. But the learnability of a single hidden

layer is still not clear. In practice, it is common to use two or more

fully connected layers. We chose to begin with two hidden layers

as Mnih et al. did for DRL [20]. Adding more layers becomes a

problem of diminishing returns, with each additional layer adding

signi�cantly more computation time while returning lower gains

in training successes.

We use the Adam optimizer [15] for training the DNN. Adam

is accepted by the machine learning community as virtually the

best stochastic gradient descent optimization algorithm. It has high

convergence speed and good at escaping from saddles and certain

local minima [23]. The DRL Engine is a separate process, and always

runs during the training step using di�erent random minibatches.

For each minibatch, we update the target network’s θ−i using θi :

θ−i = θ
−
i × (1 − α) + θi × α

Where α is the target network update rate.

3.5 Replay Database
One training step (w) needs the transition of system status from t
to t + 1, the action performed, and the reward after performing the

action:wt = (st , st+1,at , rt). In CAPES, we store system status and

actions in two tables that are indexed by t in the Replay Database.

CAPES uses this algorithm to construct a minibatch for training,

which is shown in Algorithm 1.

CAPES checks that the Replay DB contains enough data for each

sampled timestamp.

3.6 Exploration Period
As we have stated in the background section, it is important for the

agent to experience as many states as possible during the training

process. The initial training period uses a standard ϵ-greedy policy,

in which the tuning agent takes the estimated optimal action with

probability 1 − ϵ , and randomly picks an action for the other cases.

We let ϵ to anneal linearly from 1.0 to 0.05 (100% to 5%) during

the training period. ϵ here is an example of hyperparameter. Ad-

ditionally, the Interface Daemon has a controlling program that

has access to the scheduling of the workload. Whenever a new

workload is started on the system, the Interface Daemon noti�es

the DRL Engine to bump up ϵ to 0.2 (or 20% of random actions) so

that the tuning agent can do some exploration while avoiding local

maximums.

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

Algorithm 1 Constructing a minibatch of size n from data in the

Replay DB.

1: procedure ConstructMinibatch(n)

2: samplesNeeded← n
3: while True do
4: Uniformly generate samplesNeeded timestamps

5: for each timestamp ti do
6: if Replay DB contains enough data at ti then
7: Get st , st+1, at from Replay DB

8: ri ← CalcReward(st , st+1)
9: W + = (st , st+1, at , rt)

10: end if
11: end for
12: ifW has n samples then returnW
13: end if
14: samplesNeeded← n − len(W)
15: end while
16: end procedure

3.7 Performing Actions
Actions dictate what a target system’s parameters should be, and

CAPES can tune many parameters at the same time. At a �xed

rate (every action tick), CAPES decides on an action that either

increases or decreases one parameter by a step size. The valid range

and tuning step size are customizable for each target system. For

instance, one can say that we need to tune the I/O size, which has

a valid range from 1 KB to 256 KB, and a tuning step size of 1 KB.

We also include a NULL action that performs no action for a step.

The DNN can choose to do the NULL action if it sees no need to

change any parameter. Thus, the total number of actions we are

training the DNN for is

2 × number_of_tunable_parameters + 1.

The same observation data format is used in both training and

action steps. The DRL Engine always uses the observation of the

current t to calculate the candidate action. Before broadcast, the

Interface Daemon will call an Action checker to rule out egregiously

bad actions, such as setting the CPU clock rate to 0. This step is

optional, and we have not used it in our evaluations, but if there

are known bad parameter values, they can be shielded from the

target system. We do acknowledge that this adds an extra step for

the user of a real CAPES system to de�ne what a bad action is prior

to running CAPES, however we consider it reasonable that the

user has some general knowledge of what the system should never

do. The Interface Daemon then determines which Action Message

should be sent to which Control Agent. A Control Agent will listen

for inbound Action Messages from the Interface Daemon and will

change the system parameters accordingly.

4 IMPLEMENTATION AND EVALUATION
We chose the Lustre �le system as the target system because it

is a high performance distributed �le system that can distribute

I/O requests from every node to many servers in parallel. It can

also generate a huge amount of I/O to stress the system. The pur-

pose of the evaluation is to test whether CAPES can improve the

throughput of the workload during peak times and to understand

its e�ectiveness on a variety of workloads.

4.1 Implementation
We implemented a CAPES prototype to evaluate this design. The

majority of the system is written in Python, with the DNN im-

plemented using Google TensorFlow [1]. We carefully pro�led all

code and optimized all hotspots to ensure minimal resource use

of the Monitoring and Control Agent, in order to maximize the

training speed. The Replay DB is a SQLite database using Write-

Ahead-Logging for optimal concurrent write/read performance.

The whole system has about 6,000 lines of code.

Each Lustre client maintains one Object Storage Client (OSC)

for a server it talks to. We have four servers, and are using stripe

count of four so each client has four OSCs. Each OSC’s Performance

Indicators are calculated independently. We collect the following

Performance Indicators:

(1) max_rpc_in_�ight: Lustre congestion window size.

(2) Read throughput.

(3) Write throughput.

(4) Dirty bytes in write cache.

(5) Maximum size of write cache.

(6) Ping latency from each client to each server.

(7) Ack EWMA: exponentially weighted moving average (EWMA)

of gaps between server replies.

(8) Send EWMA: EWMA of gaps between the original sent

times of the corresponding requests of the replies received

by the client.

(9) Process Time (PT) ratio: current Process Time / shortest

Process Time seen so far. Process Time is the time needed

by the server to process one I/O request.

The last three indicators are secondary indicators. They were

well known to re�ect the congestion state of networks and dis-

tributed storage systems [17] so we patched the Lustre client to

track them.

We tune the following two parameters of each Lustre Object

Storage Client. All clients use the same parameter values for all

connections.

(1) max_rpc_in_�ight: Lustre congestion window size.

(2) I/O rate limit: how many outgoing I/O requests are allowed

per second.

4.2 System Setup
The evaluation system contains four dedicated servers and �ve

dedicated clients. All nodes use the same hardware: an Intel Xeon

CPU E3-1230 V2 @ 3.30 GHz, 16 GB RAM, and one Intel 330 SSD

for the OS. The network is gigabit ethernet with measured peak

aggregated throughput of∼500 MB/s. Each storage server node uses

one 7200 RPM HGST Travelstar Z7K500 hard drive, of which raw

I/O performance is measured at 113 MB/s for sequential read and

106 MB/s for sequential write. We used Lustre’s default stripe count

of four and 1 MB stripe size. No workload is memory intensive, so

all server and clients nodes have plenty of memory for bu�ering

and running worker threads. The cache policies of read and write

are both Lustre default – write cache is write-through; the server

replies a write completion when data hits the disk. We speci�cally

picked this storage and network hardware so the whole system has

a 1:1 network to storage bandwidth ratio, matching other larger

supercomputers [7], in order to study and test CAPES on a system

CAPES SC17, November 12–17, 2017, Denver, CO, USA

Table 1: List of hyperparameters and their values used in CAPES evaluation

Hyperparameter Value Description

action tick length 1 One action is performed every second.

ϵ initial value 1 Initial value of ϵ (100% actions are random at the beginning of training).

ϵ �nal value 0.05 Final value of ϵ (5% actions are random after the training process).

discount rate (γ) 0.99 The discount rate as used in Equation 1.

hidden layer size 600 8 + 4 PIs per client ×5 clients ×10 ticks per observation.

initial exploration period 2 h The duration of which the initial value of ϵ (random action percentage) is linearly annealed to

the �nal value.

minibatch size 32 Number of observations over which each stochastic gradient descent update is performed.

missing entry tolerance 20% For each observation, as much as 20% missing data is tolerated.

number of hidden layers 2 The number of hidden layers beside the input and output layers. The size of the hidden layers

is the same as the input.

Adam learning rate 0.0001 The learning rate of Adam.

sampling tick length 1 s One sample is taken every second.

sampling ticks per observation 10 The number of sampling ticks to be included in one Observation. This e�ectively pack 10

seconds information leading to t into one observation.

target network update rate (α) 0.01 For each minibatch, the target network’s θ−i is updated as θ−i = θ
−
i × (1 − α) + θi × α .

that mimics typical real world resource-constrained environments.

The storage workloads were generated using Filebench [25] running

on all clients in parallel.

The Monitoring and Control Agents only run on Lustre clients,

and we do not tune anything on the server node for this prototype.

All other components of CAPES run on another dedicated node. Our

CAPES node has an Intel Xeon CPU E5-2637 @ 3.00 GHz, 128 GB

RAM, an SSD RAID, and one nVidia GTX 1080 GPU.

It is worth noting that the whole evaluation system is not located

on an isolated network due to the IT requirements of our depart-

ment, and we have observed network tra�c interference from time

to time, such as the routine network scanning of the IT department

and machine status queries from the cluster monitoring system. We

did not isolate the whole system because we consider this kind of

noise as bene�cial to the evaluation, because more noise makes the

training and tuning process challenging, and a tuning system works

only within a perfect environment is not pragmatically interesting.

The hyperparameters used in the evaluation are listed in Table 1.

We chose those values after several informal trials, so it is conceiv-

able that better tuning results and/or a shorter training duration

can be achieved by using better values. It is within our future work

to perform a systematic search on these hyperparameters.

4.3 Evaluation Workloads and Performance
Increase

We evaluated the following synthetic workloads:

• Random read and write with various read to write ratios:

9 : 1, 4 : 1, 1 : 1, 1 : 4, 1 : 9;

• Filebench �le server; and

• Filebench �ve-stream concurrent sequential write.

Random read and write workloads. In these random read and

write workloads, each client has �ve threads doing the same ran-

dom read and write with a �xed ratio. We have evaluated various

Figure 2: Overview of random read write workloads evalu-
ated with CAPES. Throughput before, after 12 hours train-
ing, and after 24 hours training are shown. Baseline uses
default Lustre settings. Error bars show 95% con�dence in-
tervals.

di�erent read to write ratios to mimic a broad range of real appli-

cations. We conducted training processes of 12 and 24 hours with

the goal of optimizing the aggregated read/write throughput. After

training, we evaluated the e�ects of CAPES’s tuning.

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

It can be seen in Figure 2 that CAPES works best with workloads

that are dominated by writes; it increased the performance of the

workload with 1:9 read:write ratio by 45%. CAPES did not show

obvious e�ect on read-heavy workloads. This is expected because

tuning the number of allowed outstanding I/O requests (congestion

window size) of Lustre does have a bigger impact on write than

read. The evaluation used storage servers that have hard disk drives

as the underlying storage device, which need to spend a majority

of I/O time doing seeks for random reads and would not be a�ected

much by the number of outstanding read requests. In contrast, out-

standing random write requests can be merged and handled more

e�ciently if there are more requests in the I/O queue, thus tuning

the number of allowed outstanding write requests has a bigger

impact on the e�ciency of the merge, and in turn the performance.

We also measured the performance after di�erent training dura-

tion to understand how long the training sessions needed to be. We

can see that training for 24 hours had slightly better results than

training for 12 hours only for read-heavy workloads, and had little

e�ect on other workloads. This is likely due to that changing the

congest window size has a non-obvious e�ect on the read perfor-

mance, and that small changes in the read performance cannot be

easily discerned from noise. Therefore, it is understandable that the

training would need a longer duration to converge.

Figure 3: Overview of Filebench �le server and sequential
write workload evaluated with CAPES. Throughput before
and after CAPES tuning are shown. Baseline uses default
Lustre settings. Error bars show 95% con�dence intervals.

Filebench �le server workload. In addition to the random read

write workloads, we have also evaluated the Filebench �le server

and a sequential write workload, as shown in Figure 3. Filebench �le

server is a synthetic workload that simulates the I/O pattern that is

usually seen on busy �le servers, which is one of the most common

and important workloads among data centers and enterprise storage

servers. Each instance of the workload includes read, write, and

metadata operations. It loops through the following I/O operations

using a prepopulated set of �les:

(1) Create a �le and write the �le to 100 MB,

(2) Open another �le and append random sized data (mean at

100 MB),

(3) Open a randomly picked �le and read 100 MB,

(4) Delete a random �le, and

(5) Stat a random �le.

Each node ran 32 instances (160 instances in total for �ve nodes)

that simulates I/O-bound applications that are competing with each

other for the �le server. They generated enough tra�c to saturate

the server nodes.

The second workload is the sequential write workload, which

has �ve sequential write instances on each client (25 instances in

total). Each instance does sequential write with 1 MB write size. This

benchmark simulates both HPC checkpoint and video survellance

workloads. Both the �le server and sequential write workloads

measure the aggregated throughput of all instances.

We observed that 12 hours training is not enough to �nd the op-

timal policy for optimizing the �le server workload. The �le server

workload is especially challenging for Q-learning because, unlike

other random read/write workloads, it involves a wide range of read,

write, and metadata operations. This inevitably introduces more

noise into the measurement process: the aggregated throughput

has more �uctuations, and, from CAPES perspective, a good action

might not lead to a higher throughput every time, and the delay

between action and reward varies too due to di�erent types of oper-

ations involved. It required about 24 hours of training to converge

to a good policy that can lead to 17% increase in throughput.

Some existing parameter optimization and congestion control

systems su�er from the over�tting problem: the e�ectiveness of

the trained model diminishes quickly when there are changes to

seemingly related properties of the workload, such as on-disk data

location, �le fragmentation, allocation of �les among servers, and

the amount of free space. To test if our trained DNNs also su�er from

over�tting, we tested a DNN in three sessions that were spread out

over two weeks, with numerous unrelated �le operations between

the sessions. Each session is four hours long, including two hours for

measuring the baseline throughput (using default parameter values

without tuning) and two hours for tuned throughput. The results are

shown in Figure 4. The CAPES DNN has increased the throughput

of all three sessions by from 13% to 36%. Rigorous statistical checks

have been done using the Pilot tool [16]: throughput was measured

every second, autocorrelation of the samples are checked to ensure

they are independent and identically distributed and not temporally

correlated, and con�dence intervals are calculated at 95% con�dence

level. The results show that there is no obvious over�tting problem.

4.4 Training E�ciency
Figure 5 shows how the prediction error changes over time dur-

ing the whole training process. The prediction error shows the

di�erence between the DNN’s predicted performance and the real

performance. It is an important metric of training e�ciency: the

lower prediction error it gets, the better the DNN can know which

action to take to get a desired performance boost. We can see that

the prediction error decreases steadily as the training session con-

tinues after an initial warm up period.

4.5 Training Session’s Impact on the Workload
The training session includes carrying out random actions on the

target system, therefore it is important to understand the training’s

impact on the target system’s performance. Because we used an

ϵ-greedy policy that anneals from 100% random action to 5% action,

CAPES SC17, November 12–17, 2017, Denver, CO, USA

Table 2: List of technical measurements of the CAPES evaluation (9 Monitoring Agents in Total)

Measurement Value Description

duration of training step (CPU) ≈ 0.1 s One training step of a 32-observation minibatch on CPU.

duration of training step (GPU) ≈ 0.01 s One training step of a 32-observation minibatch on GPU.

number of records of the Replay DB 250 k One record per second. 70 hours in total.

size of the DNN model 84 MB The size of the deep neural network in memory.

total size of the Replay DB on disk 0.5 GB The size of the SQLite database on disk (no compression).

total size of the Replay DB in memory 1.5 GB The size of the whole Replay DB in memory when being used by the training session.

performance indicators per client 44 Every client collects this many performance indicators per second (�oat numbers).

observation size 1760 One observation contains this many �oat numbers.

average message size per client ≈ 186 B Every second one client sends out about this many bytes to the Interface Daemon.

This is the compressed size of all 44 performance indicators.

Figure 4: Fileserver workload throughput with and without
CAPES tuning. Baseline uses default Lustre settings. Error
bars show the con�dence interval at 95% con�dence level.

the DNN should be able to “mitigate” the impact of the suboptimal

random actions when it has a chance to deliver a calculated action,

except for the beginning of the training session. Figure 6 con�rms

this speculation and shows that the overall throughput of a 70-hour

training session is comparable to the three baseline throughputs

we measured at three di�erent times.

4.6 Other Measurements
We provide other related measurements we have collected during

the evaluation process in Table 2. They are useful for understanding

the computational cost of CAPES for planning to build a trainer for

a larger system. It can be seen that the messages sent out by the

Monitoring Agents used a small amount of network tra�c, and the

Replay DB could be easily stored in a modern computer’s memory.

Using a GPU can achieve a 10 fold increase in training performance

comparing to CPU.

Figure 5: Predicted error during the training process. Predic-
tion error is the di�erent between the neural network’s pre-
dicted performance after observing the system’s status and
the actual system performance one second later. The predic-
tion re�ects how “well” CAPES understands the target sys-
tem, and a lower prediction error leads to better tuning re-
sults.

5 RELATEDWORK
Parameter optimization is a challenging research question. The

optimal values of parameters can be a�ected by every aspect of the

workloads and the system, such as the I/O request size, randomness,

and network topology. Di�erent software versions can also have

di�erent quirks, causing their performance to vary. Existing solu-

tions can be classi�ed by whether a model is required and whether

the tuning is a one-time process or a continuous process that can

be used in production.

Feedback control theory is commonly used in model-based ap-

proaches and are often combined with slow-start, fast fallback

heuristics [9, 27, 32]. There are other more complex models as

well [14, 29]. Model-based approaches work well when the system

and workloads are relatively simple and well understood. Most

of these solutions still require the administrator to choose values

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

for critical parameters. For instance, if the start is too slow or the

falling back is too fast, the system’s capacity is wasted; if the speed

increases too fast or the falling back is not fast enough, the system

becomes unstable under peak workloads.

Model-less, general purpose approaches usually treat the target

system as a black box with knobs and adopt a certain search algo-

rithm, such as hill climbing or evolutionary algorithms [13, 24, 30].

These search-based solutions are often designed as a one-time pro-

cess to �nd the optimal parameter values for a certain workload

running on a certain system. The search process usually requires

a simulator, a small test system, or the target system to be in a

controlled environment where the user workload can be repeated

again and again, testing di�erent parameter values. ASCAR [17]

directly tunes the whole target system and can automatically �nd

optimal tra�c control policies to improve peak hour performance.

Most of these search methods are a one-time process: if the status

of the target system or workloads do not match what the optimizer

saw during the bootstrap tuning process, it would fail to improve

the system. This in�exibility limited their use in real world envi-

ronments. There are also domain speci�c solutions that tunes the

parameters of a certain application [3, 11, 28].

The e�ciency of search-based algorithms depends on the size

of the parameter space, and many of them su�er from over�tting

because search algorithms do not provide generalization; when

the system or workload changes, the search process needs to be

redone. Zhang et al. proposed a method that used neural network to

accelerate a traditional search method and to add a certain degree

of generalization [31]. Chen et. al. created an early attempt at using

neural network-based reinforcement learning to tune a single server,

however it’s tuning was limited to that single server. [8] CAPES is

a more complete system that works on a larger scale, and has taken

advantage of the recent rapid progress of deep learning techniques.

There are other optimization solutions that change the archi-

tecture of the system automatically, like Hippodrome [2]. They

require intrusive and radical modi�cations to the whole system.

Figure 6: Baseline throughputs and training session overall
throughput. Error bars show the con�dence interval at 95%
con�dence level.

There are also tools such as [33] that can manage parameters of

a large number of nodes. CAPES can work in tandem with such

systems to achieve more comprehensive coverage of performance

optimization in addition to parameter tuning.

6 CONCLUSION AND FUTUREWORK
CAPES is capable of �nding optimal values for the congestion win-

dow size and I/O rate limit of a distributed storage system in a

noisy environment. The optimal values reduces peak time conges-

tion and increases overall throughput by up to 45% in di�erent

heavy mixed read/write/metadata workload tests. Compared to

manual parameter tuning, CAPES is superior in that it does not

require to be supervised, it does not require prior knowledge of the

system, it can always run during normal operations, and it can dy-

namically change parameters. We maintain that automated tuning

system could play an important role for future complex distributed

systems, such as data centers and supercomputers, to both reduce

management costs and increase performance.

The design is general purpose and does not assume anything

except that a target system has parameters that can be tuned during

run time. With an early prototype, we have demonstrated that it

can tune a Lustre �le system with minimal human intervention.

Theoretically, CAPES can work with a wide range of complex sys-

tems, and we plan to evaluate it on more systems in production

environments.

DNN-based reinforcement learning does have a disadvantage

in that it can be di�cult to explain how the trained model works.

Usually this is not a compelling problem for performance tuning

problems, but can be problematic if the target system is mission

critical and suboptimal actions need to be absolutely avoided. That

is why we introduced the action checker component (see Figure 1).

New deep learning techniques are being invented on an almost daily

basis and sometimes can greatly increase the training e�ciency.

These new techniques, such batch normalization and continuous

Deep Q learning [18], need be systematically evaluated and added

to CAPES to make it more intelligent and generate better results.

We will also need to use a systematic approach to hyperparameter

optimization, such as using grid search.

On the Lustre-speci�c evaluation system, there are many more

things can be done. For instance, we can collect information from

server nodes in addition to client nodes. It is also possible to tune

for two performance indices, such as throughput and latency, at the

same time. More performance indices can be merged into a single

reward score using an objective function [17]. We can also tune

more parameters in addition to the congestion window size and a

hard rate limit; DNN is known to be quite e�ective at handling 20

or more candidate actions [21], which maps to at least 10 tunable

parameters.

CAPES needs to be evaluated on larger systems with more fea-

tures, more parameters, and/or more nodes. There should be no

need to do manual feature selection for PIs or to change the struc-

ture of the DNN, because DNNs are good at �ltering through raw

input data [4, 21]. Increasing the size of the network alone should

be enough to scale up CAPES considerably.

It also would be interesting to compare CAPES’ best results

with the best results from other automatic tuning methods. To

CAPES SC17, November 12–17, 2017, Denver, CO, USA

further promote research on this topic, we released CAPES and our

modi�ed Lustre system at https://github.com/mlogic/capes-oss and

https://github.com/mlogic/ascar-lustre-2.9-client.

ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-

dation under awards IIP-1266400, CCF-1219163, CNS-1018928, CNS-

1528179, by the Department of Energy under award DE-FC02-

10ER26017/DESC0005417, by a Symantec Graduate Fellowship, by

a grant from Intel Corporation, and by industrial members of the

Center for Research in Storage Systems.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine

Learning. In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI ’16). USENIX Association, Savannah, GA.

[2] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal,

and Alistair Veitch. 2002. Hippodrome: running circles around storage adminis-

tration. In Proceedings of the Conference on File and Storage Technologies (FAST).
Monterey, CA. http://www.ssrc.ucsc.edu/PaperArchive/anderson-fast02.pdf

[3] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating

Root-cause Diagnosis of Performance Anomalies in Production Software. In

Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, 307–320.

http://dl.acm.org/citation.cfm?id=2387880.2387910

[4] Yoshua Bengio. 2009. Learning Deep Architectures for AI. Foundations and
Trends® in Machine Learning 2, 1 (Jan. 2009), 1–127. DOI:https://doi.org/10.1561/

2200000006

[5] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.

2002. The complexity of decentralized control of Markov decision processes.

Mathematics of Operations Research 27, 4 (Nov. 2002), 819–840. DOI:https://doi.

org/10.1287/moor.27.4.819.297

[6] Christopher M. Bishop. 2007. Pattern Recognition and Machine Learning (1st ed.).

Springer.

[7] Julian Borrill, L. Oliker, J. Shalf, and Hongzhang Shan. 2007. Investigation of

leading HPC I/O performance using a scienti�c-application derived benchmark.

In Proceedings of SC07. 1–12. DOI:https://doi.org/10.1145/1362622.1362636

[8] Haifeng Chen, Guofei Jiang, Hui Zhang, and Kenji Yoshihira. 2009. Boosting the

Performance of Computing Systems Through Adaptive Con�guration Tuning. In

Proceedings of the 2009 ACM Symposium on Applied Computing (SAC ’09). ACM,

New York, NY, USA, 1045–1049. DOI:https://doi.org/10.1145/1529282.1529511

[9] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. 2003. Managing Web Server

Performance with AutoTune Agents. IBM Systems Journal 42, 1 (Jan. 2003),

136–149. DOI:https://doi.org/10.1147/SJ.2003.5386833

[10] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper

Snoek, Holger Hoos, and Kevin Leyton-Brown. 2013. Towards an empirical

foundation for assessing bayesian optimization of hyperparameters. In NIPS
workshop on Bayesian Optimization in Theory and Practice. 1–5.

[11] Adem Efe Gencer, David Bindel, Emin Gün Sirer, and Robbert van Renesse. 2015.

Con�guring Distributed Computations Using Response Surfaces. In Proceedings
of the 16th Annual Middleware Conference (Middleware ’15) (Middleware ’15). ACM,

New York, NY, USA, 235–246. DOI:https://doi.org/10.1145/2814576.2814730

[12] Kurt Hornik. 1991. Approximation Capabilities of Multilayer Feedforward Net-

works. Neural Network 4, 2 (March 1991), 251–257. DOI:https://doi.org/10.1016/

0893-6080(91)90009-T

[13] Pooyan Jamshidi and Giuliano Casale. 2016. An Uncertainty-Aware Approach to

Optimal Con�guration of Stream Processing Systems. In Proceedings of the 24th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’16).

[14] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. 2005. Triage: Perfor-

mance Di�erentiation for Storage Systems Using Adaptive Control. ACM Trans-
actions on Storage 1, 4 (2005), 457–480. http://www.ssrc.ucsc.edu/PaperArchive/

karlsson-tos05.pdf

[15] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. (2015). arXiv:cs.LG/1412.6980

[16] Yan Li, Yash Gupta, Ethan L. Miller, and Darrell D. E. Long. 2016. Pilot: A

Framework that Understands How to Do Performance Benchmarks the Right

Way. In Proceedings of the 24th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS ’16).

[17] Yan Li, Xiaoyuan Lu, Ethan L. Miller, and Darrell D. E. Long. 2015. ASCAR:

Automating Contention Management for High-Performance Storage Systems. In

Proceedings of the 31th IEEE Conference on Mass Storage Systems and Technologies.
[18] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control with

deep reinforcement learning. (2016). arXiv:cs.LG/1509.02971

[19] Long-Ji Lin. 1993. Reinforcement learning for robots using neural networks. Tech-

nical Report. DTIC Document.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with

deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540 (26

02 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[22] Open Scalable File Systems, Inc. 2014. The Lustre® �le system. http://www.

opensfs.org/. (2014).

[23] Sebastian Ruder. 2017. An overview of gradient descent optimization algorithms.

http://sebastianruder.com/optimizing-gradient-descent/. (2017).

[24] A. Saboori, G. Jiang, and H. Chen. 2008. Autotuning Con�gurations in Distributed

Systems for Performance Improvements Using Evolutionary Strategies. In The
28th International Conference on Distributed Computing Systems (ICDCS ’08).
769–776. DOI:https://doi.org/10.1109/ICDCS.2008.11

[25] SUN Microsystems, File system and Storage Lab (FSL) at Stony Brook University,

and Other Contributors. 2016. Filebench. https://github.com/�lebench/�lebench.

(2016).

[26] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA.

[27] Andrew S. Tanenbaum. 2010. Computer Networks (5th Edition). Prentice Hall.

[28] K. Wang, X. Lin, and W. Tang. 2012. Predator – An experience guided con�gu-

ration optimizer for Hadoop MapReduce. In IEEE 4th International Conference
on Cloud Computing Technology and Science (CloudCom ’12). 419–426. DOI:
https://doi.org/10.1109/CloudCom.2012.6427486

[29] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos

Faloutsos, and Gregory R. Ganger. 2004. Storage device performance predic-

tion with CART models. In Proceedings of the 12th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS ’04). 588–595. DOI:https://doi.org/10.1109/MASCOT.2004.1348316

[30] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina: computer-

generated congestion control. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM ’13). Hong Kong, 123–134.

[31] F. Zhang, J. Cao, L. Liu, and C. Wu. 2011. Performance improvement of distributed

systems by autotuning of the con�guration parameters. Tsinghua Science and
Technology 16, 4 (Aug 2011), 440–448. DOI:https://doi.org/10.1016/S1007-0214(11)

70063-3

[32] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma Riska, and Erik

Riedel. 2006. Storage Performance Virtualization via Throughput and Latency

Control. ACM Transactions on Storage 2, 3 (Aug. 2006), 283–308. DOI:https:

//doi.org/10.1145/1168910.1168913

[33] Wei Zheng, Ricardo Bianchini, and Thu D. Nguyen. 2007. Automatic Con�g-

uration of Internet Services. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007 (EuroSys ’07). ACM, New York,

NY, USA, 219–229. DOI:https://doi.org/10.1145/1272996.1273020

A ARTIFACT DESCRIPTION
We have released the source code of CAPES under the 3-clause BSD

license as an artifact to promote research in related areas.

A.1 Abstract
This artifact contains the source code of CAPES, a deep reinforce-

ment learning-based parameter tuning system. It can be used to

tune virtually any parameters as long as an adapter function is

provided for collecting the observation from the target system and

for setting the parameters to the target system. A sample adapter

function for the Lustre �le system is included. Hardware and soft-

ware requirements are described, and installation instructions are

provided.

https://github.com/mlogic/capes-oss
https://github.com/mlogic/ascar-lustre-2.9-client
http://www.ssrc.ucsc.edu/PaperArchive/anderson-fast02.pdf
http://dl.acm.org/citation.cfm?id=2387880.2387910
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1145/1362622.1362636
https://doi.org/10.1145/1529282.1529511
https://doi.org/10.1147/SJ.2003.5386833
https://doi.org/10.1145/2814576.2814730
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
http://www.ssrc.ucsc.edu/PaperArchive/karlsson-tos05.pdf
http://www.ssrc.ucsc.edu/PaperArchive/karlsson-tos05.pdf
http://arxiv.org/abs/cs.LG/1412.6980
http://arxiv.org/abs/cs.LG/1509.02971
http://dx.doi.org/10.1038/nature14236
http://www.opensfs.org/
http://www.opensfs.org/
http://sebastianruder.com/optimizing-gradient-descent/
https://doi.org/10.1109/ICDCS.2008.11
https://github.com/filebench/filebench
https://doi.org/10.1109/CloudCom.2012.6427486
https://doi.org/10.1109/MASCOT.2004.1348316
https://doi.org/10.1016/S1007-0214(11)70063-3
https://doi.org/10.1016/S1007-0214(11)70063-3
https://doi.org/10.1145/1168910.1168913
https://doi.org/10.1145/1168910.1168913
https://doi.org/10.1145/1272996.1273020

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

A.2 Description
The CAPES system collects a target system’s states (observation,

also called Performance Indicators, or PIs) and performance mea-

surements (rewards), and uses Deep Q-Learning to train a deep

neural network (DNN) for generating parameter values that can be

use to increase the target system’s performance. CAPES is designed

to be non-invasive and can work with most existing distributed

systems. The current prototype includes an adapter for working

with the Lustre distributed �le system.

A.2.1 Check-list (artifact meta information).
• Algorithm: CAPES
• Compilation: No need
• Run-time environment: Red Hat Enterprise Linux/CentOS

7, Python 3.5
• Publicly available?: Yes

A.2.2 How so�ware can be obtained. The artifact can be down-

load from the git repository https://github.com/mlogic/capes-oss.

A.2.3 Hardware dependencies. CAPES is designed to be �exible

and can work with both small and large target systems. Here we

describe the hardware dependencies of the CAPES system, and it

should not be confused with the target system’s hardware require-

ment. For instance, it is possible to run CAPES on a powerful server

to tune one or more small, embedded systems.

CAPES consists of several daemons:

• Interface Daemon for receiving, storing, and aggregating

observations from the Monitoring Agent.

• Deep Q-Learning (DQL) Daemon for running the core neu-

ral network algorithm.

• Monitoring Agent for collecting observation and setting

parameter valuse for the target system.

The Interface Daemon and the DQL Daemon can be deployed

to any computer node in or out of the target system. But it is

recommended to deploy them to one or more dedicated nodes to

avoid negatively impacting the performance of the target system. It

is usually adequate to deploy them on the same node for evaluation

purpose. For large target systems, di�erent daemons should be

deployed on di�erent nodes for better scalability.

The minimal hardware requirement for running the Interface

Daemon and the DQL Daemon is the same as the hardware re-

quirement of Red Hat Enterprise Linux(RHEL)/CentOS 7 (https:

//access.redhat.com/articles/rhel-limits) and Python 3.5. The de-

fault setting of the DQL daemon caches the whole replay database

in memory for optimal training performance and requires plenty

of RAM. The cache data is stored in a memory-e�cient manner

using NumPy arrays. The total amount of RAM required depends

on the observation size and number of entries in the replay data-

base. The observation size depends on how many frames of data

are included in one observation, number of Performance Indicators

in each frame, and the number of nodes in the system. For our test

cluster that has about 10 nodes, the largest cache size was about

3 GB, so we expect any modern hardware that has no less than

16 GB of RAM should be enough for evaluation purpose.

A GPU that is supported by TensorFlow (https://www.tensor�ow.

org/install/install_linux#NVIDIARequirements) is recommended

for the neural network’s training process. For evaluation purpose

with a small target system, using GPU is not necessary, but we

expect GPUs to be used in any non-trivial deployment.

The Monitoring Agent needs to be be deployed to every node

of the target system where observation or setting parameters are

needed. The Monitoring Agent does not have special hardware

requirement and should run on any systems that support Python

3.5.

A.2.4 So�ware dependencies. CAPES has been developed and

tested in Python 3.5 on RHEL/CentOS 7. CAPES should also work

on other modern Linux systems and later versions of Python with

minimal modi�cation. CAPES also requires TensorFlow v1.0, which

can be downloaded from www.tensor�ow.org. Other dependencies

are listed in setup.py in the top level directory.

It is possible to port CAPES to other OSes, such as Windows

or macOS, as long as they support Python 3.5 (and TensorFlow

for the DQL Daemon only). The major parts that need porting

are _run_as_service.py, which implements running a Python

program as a system service (daemon), and all shell scripts.

The CAPES source code repository includes a Lustre adapter

for observing and controlling a Lustre �le system. The default set-

ting controls only max_rpcs_in_flight and should work with any

version of Lustre. If you want to take advantage of the secondary

performance indicators as introduced in the paper or choose to

enable the controlling of I/O rate limit, you would need to apply

our patch to the Lustre 2.9 client. The patch can be found at the git

repository: https://github.com/mlogic/ascar-lustre-2.9-client.

A.3 Installation
CAPES is designed to optimize a target system, so in general you

should have the target system deployed before setting up CAPES.

The following instructions assume that you already have a working

Lustre system. The default set up of CAPES needs a Monitoring

Agent running on each client and does not require changes to the

server. It is also possible to evaluate CAPES using only a subset of

clients of the cluster.

Python 3.5 need to be set up �rst. Python 3.5 can be easily in-

stalled on RHEL/CentOS 7 from either the Red Hat Software Collec-

tions www.softwarecollections.org or the IUS https://ius.io/ repos-

itory. Please refer to TensorFlow’s website for methods to install

TensorFlow.

For simplicity, all daemons (Interface Daemons, DQL Daemon,

and Monitoring/Controlling Agents) share the same source code

tree. After deploying the CAPES source code to the node, run:

python setup.py install

to install Python dependencies.

The �nal step of installation is con�guring CAPES. All CAPES

con�guration settings are in the �le conf.py in the top level direc-

tory. It includes explanation and sample default values. Each node

can have a di�erent conf.py �le if needed, but for simplicity you

can share the same conf.py among all CAPES services.

All parameters and their valid ranges of values must be set cor-

rectly in conf.py. Read the comments and samples in conf.py for

detailed instructions.

A.3.1 Interface Node. The Interface Node runs the Interface

Daemon, which receives, stores, and aggregates observations from

https://github.com/mlogic/capes-oss
https://access.redhat.com/articles/rhel-limits
https://access.redhat.com/articles/rhel-limits
https://www.tensorflow.org/install/install_linux#NVIDIARequirements
https://www.tensorflow.org/install/install_linux#NVIDIARequirements
www.tensorflow.org
https://github.com/mlogic/ascar-lustre-2.9-client
www.softwarecollections.org
https://ius.io/

CAPES SC17, November 12–17, 2017, Denver, CO, USA

all Monitoring Agents. The IP address of the Interface Node and

the database connection information should be set in conf.py. The

Interface Daemon does not have extra Python dependencies and

can be started and stopped by running:

intfdaemon_service.sh conf.py {start|stop}

A.3.2 DQL Node. The DQL Node runs the Deep Q-Learning

Daemon and requires TensorFlow. The installation instruction for

TensorFlow can be found at https://www.tensor�ow.org/install/.

The DQL Daemon can be started and stopped by running:

dqldaemon_service.sh conf.py {start|stop}

A.3.3 Client Nodes. The client nodes read the IP address of the

Interface Node from conf.py. You will also need to provide a col-

lector function for collecting observation and a controller function

for setting the parameter values if you are not using the provided

Lustre adapter. These two functions are Python functions that can

be de�ned anywhere and imported in conf.py, which includes

function interface declarations and samples. The Monitoring Agent

Daemon can be started and stopped by running:

ma_service.sh conf.py {start|stop}

Many clusters have existing telemetry function for diagnose

and monitoring purposes, and as long as they can provide high

resolution state information of the system (observing the state at a

frequency no smaller than 1 Hz is recommended), CAPES can take

advantage of these existing information. In these cases, you will

need to develop adapters to channel the existing information into

the Interface Daemon.

A.3.4 Debugging. CAPES can output detailed debugging infor-

mation for monitoring the status of the system. The location of log

�les and debugging level are also controlled by settings in conf.py.

A.4 Experiment work�ow
Evaluation of CAPES usually involves plugging CAPES into the tar-

get system, letting CAPES run for at least 12 hours, and measuring

the change in performance. We believe it is generally safe to eval-

uate CAPES on a production system provided that bad parameter

values (or combinations) are excluded in the settings. For instance,

we knew that the max_rpcs_in_flight (RPC congestion window

size for Lustre) should not be smaller than eight, then the valid

range for the congestion window should start from nine. For extra

safety, CAPES can be started at the least busy hour of a production

system, such as at night.

Existing performance monitoring mechanisms can be used to

monitor the change in system performance before and after CAPES

is started. Please refer to the Computational Results Analysis ap-

pendix for our analytic method. There is no special training period

needed and the performance should increase gradually over time,

with notable increase happening usually after 12 hours. The setting

of exploration period can also a�ect the system’s performance in

the �rst few hours after CAPES is plugged in and can be set in

conf.py.

For optimal performance, you can also make use of the job infor-

mation if the workloads on the target system change by schedule.

For instance, if at any given moment only one kind of workload

is running on the system, we can use di�erent CAPES session for

each di�erent workload so that they are trained and tuned respec-

tively. CAPES automatically checkpoints and stores the trained

model when being stopped, and loads the saved model when being

started next time, and di�erent sessions can use di�erent saved

model �le names and replay database locations, which are set in the

conf.py �le. Therefore, the controlling of the Interface Daemon

and DQL Daemon can be added to the job scheduler to synchronize

them with the workload. On the other hand, if there are always

many workloads running at the same time on the target system,

the mixed I/O workload is usually considered a noisy random read-

/write workload, and separating them into sessions usually does

not make sense.

For evaluation purpose, the work�ow is usually like:

(1) Set up the test environment.

(2) Turn on CAPES and do a training session (12 to 24 hours).

(3) Turn o� CAPES and measure the baseline performance.

(4) Turn on CAPES and measure the tuned performance.

B COMPUTATIONAL RESULTS ANALYSIS
This appendix describes the steps and analytic methods we use to

improve the trustworthiness of our benchmark results.

B.1 Abstract
We take the trustworthiness of our evaluation results seriously

and have developed complex methods to improve the accuracy,

precision, comparability, and repeatability of the results. We have

developed the Pilot benchmark framework to process our results.

The Pilot benchmark framework automates statistical validations,

and can help to reduce human error and shorten measurement

time. All of our evaluation results are provided with con�dence

interval, which is calculated after all performance measurements

are validated to be independent and identically distributed (i.i.d.).

B.2 Results Analysis Discussion
Our results analysis focused on improving the following aspects of

the measurement:

• Accuracy re�ects whether the results actually measure

what we want to measure. A benchmark usually involves

many components of the system, so when we need to mea-

sure a certain property of the system, such as I/O band-

width, the benchmark needs to be designed in such a way

that no other components, such as CPU or RAM, are limit-

ing the measured performance. We measured the usage of

related components while the benchmark is running and

checked that which component is limiting the measured

performance.

• Precision is related to accuracy but is a di�erent concept.

Precision is the di�erence between the measured value

and the real value we need to measure. In statistical terms,

precision is the di�erence between a sample mean and

its corresponding population mean. Precision can be de-

scribed by con�dence interval (CI). The CI of a sample

mean describes the range of possible population mean at

certain likelihood. For instance, if the CI of a throughput

mean (µ) is C at the 95% con�dence level, we know that

https://www.tensorflow.org/install/

SC17, November 12–17, 2017, Denver, CO, USA Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller, and Darrell D. E. Long

there is a 95% chance that the system’s real mean through-

put is within interval [µ − C
2
, µ + C

2
]. In practice, CIs are

typically stated at the 95% con�dence level.

• Repeatability is critical to a valid performance measure-

ment because the goal of most performance benchmark

is to predict the performance of future workloads, which

means that we want the measurement results to be re-

peatable. In addition to accuracy and precision, random

errors in the measurement can have a negative impact on

repeatability if not handled properly. Random errors are

a�ected by noise outside our control, and can result in non-

repeatable measurements if the sample size is not large

enough or samples are not independent and identically

distributed (i.i.d.).

Knowing the sample mean of a performance measurement with-

out knowing the con�dence interval (CI) is not very useful, es-

pecially when talking about small performance changes. For in-

stance, we would not be able to know if a throughput mean of CI

150 ± 50MB/s is faster or slower than a throughput mean of CI

180±5MB/s, because the actual mean of the �rst system can be any-

where between 100 MB/s and 200 MB/s and the actual mean of the

second system can be anywhere between 175 MB/s and 185 MB/s.

The CI of a mean is critical for comparing system performance, and

it must be tight (a small value).

Taking all these aspects into consideration, we took periodic

measurement of the I/O performance during the benchmark and cal-

culated the mean and CI of mean using the student’s t-distribution.

A naïve way of applying the student t distribution is to directly

calculate the CI using the measured sample. However, one major

challenge for applying the student’s t-distribution is that all mea-

surement samples must be i.i.d., and this aspect is often overlooked

in many published results. If the samples are not i.i.d., or in other

words, autocorrelated, the calculated CI would be falsely tight.

Validating the i.i.d. of results is related to the question of deciding

the optimal sampling frequency during the measurement. If the

sampling frequency is too high, the measurement samples would be

highly correlated due to the discrete nature of computer algorithms

(many computer jobs are handled by schedulers, which allocate

time in the unit of slices); if the sampling frequency is too low,

it would take a very long time to accumulate enough samples to

calculate a CI that is narrow enough.

To solve this problem, we take the measurement every second

and calculate the autocorrelation of the samples. Autocorrelation is

a good indication of the degree of independence of the samples. If

the absolute value of the calculated autocorrelation is higher than

0.1 (autocorrelation has a range of [−1, 1]), we use the subsession

analysis method to treat the samples. In subsession analysis, adja-

cent samples in a time series are merged by taking the mean, and

this can reduce the autocorrelation of the samples but would also

result in fewer samples. This merging process is repeated until the

autocorrelation is brought down to below the threshold, and the

subsession results are used to calculate the CI. For certain mea-

surements, we have to merge hundreds of adjacent samples before

their autocorrelation is low enough. This illustrates the importance

of verifying the i.i.d. of samples before applying the student’s t-
distribution.

Another factor that may a�ect the accuracy and precision of

the measurement results is the warm-up and cool-down phases.

We want to measure the sustainable I/O performance of a certain

workload, but at the start and end of the workloads the performance

would have signi�cant �uctuation caused by caching e�ect. These

warm-up and cool-down phases are not what we want to measure

and negatively impact the accuracy and precision of our results. We

used a changepoint detection algorithm to detect these non-stable

phases and removes them from the result calculation.

We implemented these methods in the Pilot benchmark frame-

work [16] and also released it at https://ascar.io/pilot/.

B.3 Summary
We take the statistical validity and trustworthiness of the results

seriously. The bottleneck of the sample is analyzed to make sure

the measured I/O performance is accurate. The autocorrelation of

the measurement samples is calculated, and subsession analysis is

applied to make sure that the samples are i.i.d. before calculating

the con�dence intervals of all results. The warm-up and cool-down

phases of the samples are detected and removed to improve the

precision of the results. We have included CI at 95% con�dence

level for all measurement results in the paper.

https://ascar.io/pilot/

	Abstract
	1 Introduction
	2 Background
	3 Algorithm
	3.1 Choosing Performance Indicators
	3.2 Reward
	3.3 Monitoring Agents and The Interface Daemon
	3.4 Modeling and Training the Deep Neural Network
	3.5 Replay Database
	3.6 Exploration Period
	3.7 Performing Actions

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 System Setup
	4.3 Evaluation Workloads and Performance Increase
	4.4 Training Efficiency
	4.5 Training Session's Impact on the Workload
	4.6 Other Measurements

	5 Related Work
	6 Conclusion and Future Work
	References
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow

	B Computational Results Analysis
	B.1 Abstract
	B.2 Results Analysis Discussion
	B.3 Summary

