Technigues for Gigabyte-Scale N-gram Based
Information Retrieval on Personal Computers

Ethan Miller, Dan Shen, Junli Liu, Charles Nicholas, and Ting Chen
Computer Science and Electrical Engineering Department
University of Maryland Baltimore County
{elm,dshen,jliu,nicholas,tchen}@csee.umbc.edu

In this paper, we discuss the implementation techniques that allowed us to use n-gram based retrieval methods on
a gigabyte corpus on commodity personal computer hardware. While such techniques have been used before in word-
based systems, n-gram systems have different challenges primarily caused by the significantly larger number of
unique terms in the corpus.

Our work shows that using appropriately tuned gamma compression, extensible hash tables and significant
amounts of precalculation on the inverted index allows the indexing of a one gigabyte multilingual corpus in a com-
modity workstation with 256 MB of memory. Response time for full-document queries on this system is approximately
20 seconds for 1 KB documents while providing the same retrieval precision and recall as previous n-gram based sys-
tems. We also discuss the space-time tradeoffs we encountered in building a high performance n-gram based retrieval
engine. Because of the larger term count - our corpus had nearly 1 million unique terms and over 700 million post-
ings - we deliberately chose methods that reduced space at the cost of increasing retrieval time, primarily through on-
the-fly calculations and decompression. We found that, perhaps somewhat counter-intuitively, compressed on-disk
indices were actually faster than uncompressed indices because of the reduced time necessary to transfer information
off the disk.

1 Introduction Instead, they can simply ask for “more documents like

Scientists, researchers, reporters and the rest §ie one I've got now,” allowing for greater ease-of-use.
humanity all need to find documents relevant to their Previously, however, the TELLTALE system was
needs from a growing amount of textual information.unable to index large volumes of text. While traditional
For example, the World Wide Web currently has ovetvord-based IR systems have a number of tricks and
320 million indexable pages containing over 15 billiontoIs at their disposal, many of these methods must be
words [1], and is growing at an astonishing rate. As 4nodified or discarded wh_en building n-gram based sys-
result, information retrieval (IR) systems have becomd®ms. This paper describes our successful efforts to
more and more important. However, traditional IR sys-2PPly traditional techniques to an n-gram based IR sys-
tems for text suffer from several drawbacks, including®m, showing how we adapted traditional IR techniques
the inability to deal well with different languages, sus-{0 N-grams. By using our techniques, we were able to
ceptibility to optical character recognition errors andconstruct an n-gram based IR engine that permitted full-
other minor mistakes common on the WWW, and reli-document queries against a gigabyte of text while run-
ance on queries composed of relatively few keywords. NiNg on an inexpensive personal computer. These

The TELLTALE information retrieval system [2] improvements represent a hundred-fold increase in cor-
was developed to address these concerns. TELLTALIUS Size over previous n-gram-based efforts. Moreover,
uses n-grams (sequencesi@onsecutive Unicode char- the compression techniques we adapted from word-
acters) rather than words as the index terms acrofased IR systems reduced the size of the index file from
which retrieval is done. By using statistical IR tech-S€ven times larger than the text corpus to approximately
niques, the TELLTALE system can index text in anyhalf the size of the original text, a fifteen-fold improve-
language; the current version has been used unmodifiég€nt.
for documents in English, French, Spanish, and Chi-
nese. Additionally, n-grams provide resilience againsp Background
minor errors in the text by allowing matches on portions oyr work builds on a large body of research in infor-
of words rather than requiring the entire word to matchmation retrieval covering both traditional word-based IR
A third advantage of TELLTALE is that users need notsysitems and systems based around n-grams. In this sec-
learn query languages and query optimization methodgion, we discuss some of the most relevant previous

This paper appeared at the1999 International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, June 1999, pages 1410-1416.

work. Of course, a full treatment of prior work in infor-

mation retrieval would require a full book (if not more), 1X107*§
and such texts exist [3,4].] 8-arams
T 7-grams
2.1 Word-based IR systems 0 1x10°3 6-grams
There are many information retrieval systems in & 1 5-arams
existence, but space prevents us from mentioning more 1x105 A
than our specific system. We will briefly discuss TELL- é] -grams
TALE; the reader is referred to [3] and [4] for a more 3 n
detailed treatment of information retrieval systems. 1x10" 3-grams
2.2 N-gram based IR using TELL- 5
T ALE 1X10 O\ T \é\ L \1|0\ T \1|5\ L \ZIO\ T \2|5\ T \3'0\ T \3'5
TELLTALE [2,5] is a dynamic hypertext environ- Corpus size (MB)

ment that provides full-text information retrieval from _. .
. . Figure 1. Number of unique terms (words and n-grams)
text corpora using a hypertext-style user interface. The . : .
in corpora of varying sizes.

most important difference between TELLTALE and the
systems described in the previous sections is that TELL- At the same time, there are several advantages for
TALE is n-gram-based while the others are word-basedsing n-grams. First, a system using n-grams can be
Because of its use of n-grams, TELLTALE has somenore garble tolerant. If a document is scanned using
unique features including language independence arfdCR (Optical Character Recognition), there may be
garble tolerance. some misread characters. For example, suppose “ozone”
An n-gram [6] is a character sequence of length iS scanned as “a zone”. An OCR system may not recog-
extracted from a document; typically,is fixed for a nize this error, but an n-gram based retrieval engine will
particular corpus of documents and the queries madglill find the n-gram “zone “. From this we can see that
against that corpus. To generate the n-gram vector for4sing a system based on n-gram technology can provide
document, a window characters in length is moved garble tolerance.
through the text, sliding forward one character at a time. Second, a system can achieve language indepen-
At each position of the window, the sequence of characdence by using n-grams. In most word-based informa-
ters in the window is recorded. For example, the firstion retrieval systems, there is a language dependency.
four 5-grams in the phrase “ character sequences...” afeor example, in some Asian languages, different words
“char”, “chara”, “harac” and “aract”. In some schemes,are not separated by spaces, so a sentence is composed
the window may be slid more than one character aftepf many consecutive characters. Grammar knowledge is
each n-gram is recorded. needed to separate those characters into words, which is
Most information retrieval systems are word-based® Very difficult task to perform. By using n-grams, the
because there are several advantages for word-basgyptem does not need to separate characters into words.
systems over n-gram based systems. First, the number of

_unique words is smaller than unique n-grams e8) 3 Techniques for scalability

in the same text corpus, as shown in Figure 1._As a Because TELLTALE is n-gram based and the num-
result, the index for an n-gram-based system Will bge of n-grams in a document is much larger than the
much larger than that of a word-based system. Seconfl,mher of words in the same document, the index for
stemming techniques can be used in word-based SY§g | TALE is much larger than that of a word-based

tems but not in n-gram-based systems. HOWeVer, Nsystem. Thus, building a large-scale n-gram based
grams provide similar functionality by moving a win- .ctieval system is a technical challenge.

dow one character at a time, enclosing the stem alone at A of the performance figures reported in this paper

some time. were measured by running on a Silicon Graphics

Third, n-gram based _systems don't explicitly réMOVeryigin200 with two 180 MHz MIPS R10000 proces-
stop words, though the importance of common N-gram§ors 256 MB of main memory, and 32 KB each of

is reduced by standard statistical techniques such as C§Rsiryction and data cache. While this may seem an
troid subtraction or the use of TF/ID',: weights. Addi-jnressive machine, it is currently possible to purchase
tionally, our n-gram system doesn't make use Ofy nore powerful computer for under $5000 from com-

synonyms, though there is no reason why it couldn’t be, ity PC vendors. Thus, our techniques are applicable
modified to do so. to those who can't afford large-scale computers as well

as to those who can, and we are currently porting oufFALE. While all three data structures are crucial to our
code to run on Linux-based PCs. system, the n-gram hash table and postings lists con-
. . sume by far the largest fraction of memory, as Figure 2
3.1 Textual dat.a used 'n_eXpe”m?ntS) shows, and are thus the best candidates for compression.
To allow practical comparison of various algorithms yowever, we also “compressed” information in the doc-

and techniques, we performed our experiments on rea{iment and file hash tables to reduce overall space
world collections of data obtained from TIPSTER [7], arequirements.

DARPA (Defense Advanced Research Projects

Agency)-funded program of research and development 7000
in information retrieval and extraction. The TREC [8] 6000 || Postings |
(Text REtrieval Conference) is part of the TIPSTER
Text Program, and provides a very large text data collec- 5000+ N-gram B
tion. Three types of text data from TREC are used in this 4000 table |
paper: a selection of computer magazines and journals
published by Ziff-Davis (ZIFF), the Associated Press 3000— Document B
newswire (AP), and the Wall Street Journal (WSJ). Here ,5q0_L | |
we use ZIFF1 to represent the collection from 1989's . File table
ZIFF, ZIFF2 to represent the text data from 1988, AP1 1000— — —
to represent the text data from 1989's AP, AP2 to repre- 0 —
sent the data from 1988 and WSJ to represent the data L 0 a0 180 | 1000
from 1989's Wall Street Journal. 100%
80% —— -
ZIFF1 ZIFF2 AP1 AP2 WSJ 60% —— B
40% —— =
Documents 75,029 56,908 83,719 78,789 12,046 20% —— —
: 0% T T T T
Unique 1 10 40 180 1000

(thousands) 562.5 498.T 5000 4785 268.8

Figure 2. Space consumed by different data structures,
Total 185.1 134.1 2026 186.8 31.9 assuming no Compression.

(millions)

The file hash table provides a link between docu-
Size (MB) 257 180 260 24p 40 ments and the files that contain them. While it would be
possible to fold this information into the document hash
table, storing it separately results in a large memory sav-

Each corpus is composed of tens or hundreds cj]ngs at little cost because file names are long. For exam-

oo) . : le, a corpus with 500,000 documents of 2 KB apiece
dividual fil byte in length and")
indvicua® files averaging one megabyte In 'engin an might pack an average of 500 documents into each

containing one or more documents. Individual docu- VB file. If fi 60 bvtes in lenath. th
ments within a file are separated by SGML (Standar? ie. 11 ie names average ytes In lengtn, the

Generalized Mark-Up Language) tags. The overall cha lle table requires 60 + 4 = 64 bytes of data and 4 bytes

acteristics of the corpora on which we ran experiment f overhead per file for gtotal .Of Just 64 K.B of storage.
are summarized in Table 1. Note that the figures fo n the other hand, storing a file name with each docu-

unique and total n-grams are calculatedrfor 5; we ment requires over ?’.MB' Thu_s, large corpora bengfit
used this value fan in all of our experiments. We chose greatly from the savings provided by a separate file

n=5 because this value of n gives reasonable retriev. :lele. Additionally, this structure works well for systems

performance (precision and recall) for English Ianguagé at dont_use tra_dlt_|onal file systems. For example, a
documents without requiring too much memory. system might optimize performance for access via the
WWW by consolidating references to a single URL

3.2 Data structures together; pointing all documents from a particular URL
The primary data structures in TELLTALE are in- to one place would make retrieval and caching simpler.
memory data structures similar to those used in tradi- The n-gram hash table is the central data structure in

tional word-based IR systems. The three hash table§ELLTALE and, when the postings are included, the

one for n-grams, one for document information, and®ne that requires the most memory. This data structure is
another for file information, represent all of the informa-the one that is hardest to optimize for n-grams rather
tion gathered from the raw text scanned into TELL-than documents because of the far greater number of

Table 1. Statistics for the document collections.

both unique n-grams in the corpus and unique n-gramspace. This is hardly unexpected — the number of
in a document. For example, a typical 1 MB file fromunique n-grams in a corpus grows slowly after the cor-
the WSJ corpus has around 300 documents with ovegius reaches a certain size because the number of unique
500,000 postings — one posting for each different nn-grams in English (or any other language) grows rap-
gram in a document. When terms are words, howeveitlly for the first few megabytes of text but considerably
the same file has around 60,000 word postings, a reduniore slowly for additional text. Moreover, some combi-
tion of more than a factor of 8. It is this difference thatnations (such as “zzyqv”) are unlikely to occur in any
makes it more difficult to build IR systems using n-documents in a corpus (though this sentence shows that
grams rather than words as terms. any n-gram is possible in any document in a given lan-
In this version of TELLTALE, each posting consists guage...). In essence, the first few documents define the
of a normalized frequency for n-grdain document, a “vocabulary,” but later documents add few new n-grams
pointer to documerit and a pointer to the next posting to it. However, the number of postings grows linearly in
for n-gramk. Thus, a naive implementation requires 12the number of documents, and consumes far more space
bytes per posting on a machine that supports 32-bthan document information or file information, both of
floating point numbers and 32-bit pointers. It is thewhich also grow linearly.
space required for postings that consumes the lion’'s Because the postings list was clearly the largest
share of memory for corpora of almost any size. In typiimpediment to scaling TELLTALE to handle gigabytes,
cal documents, the number of unique 5-grams is abouwte spent most of our effort optimizing its usage. The
65%-75% of the total number of 5-grams, so a 4 KBfollowing sections describe our efforts.
document will have 2500 - 3000 unique 5-grams, result:

ing in 12x 3000= 36000 bytes of storage. On the 3.3W$]$mpresslfnt d posi list
other hand, the word count for such a document will,. e we could store uncompressed postings fists on

total perhaps 800 words with perhaps 400 differen isk, this .app_roach .suffered from two dravybacks. F'r.St’
. . he resulting index file is huge — often six times the size
words — a reduction of an order of magnitude.

To obtain good performance on the cosine similarit of the original corpus. Second, large postings lists take

Y . .
using these data structures, we broke the similarity forl-Onger to read than smaller, compressed, postings lists.

mula down as shown in Figure 3. Note that, in the fina?Ince I/O.'S very slowlcom_pared o C.PU |nstruct|or.15,.
compressing the posting list results in two benefits:

equation, all of the terms with the exception of the flr81iower disk storage utilization and faster similarity com-

term in the numerator can be precalculated. The remain- "~
. : : }Qutatlons due to reductions in the time needed to read a
ing term is non-zero only when a term appears in bot

. bucket. We found that the reduction in I/O transfer time
the query and a document in the corpus. Thus, we can .)
B ; . . more than outweighed the time needed to decompress
precompute all of the “constant” expressions in the for- . .
the postings lists.

mula for each document, and only need compute the

sum of the term frequencies on the fly. Because there ag 3.1 Strategy

relatively few n-grams in common between any pair of The original index file contained postings lists com-

documents, this calculation can be done quickly oncgosed a pair of numbers for each document in which the

the precomputation time has been invested. n-gram occurred: an integer identifying the document
containing the n-gram and the normalized frequency for

fE VoS (foa)— (. 2 the n-gram in the document. This strategy required

SIM(, 0 = Z(i) Z(@ Z("‘a")+gak 8 bytes for each posting, 4 bytes each for the document
e [dizk/ &2, number and a floating point number for the frequency.

Z Z : We adopted techniques used in word-based IR sys-

tems to compress our postings lists. First, we converted
all of the n-gram frequencies into integers by storing the
actual count of n-grams in a document rather than the
As Figure 2 shows, by far the largest consumer ofiormalized frequency. Since we already stored the num-
space in an uncompressed index is the postings ligeer of n-grams in a document, it was a simple calcula-
Even for a small corpus of 1 MB, the postings list con-tion to regenerate normalized frequency from the n-
sumes 75% of the space. For larger corpora, the relatigram count and size of the document. Second, we sorted
contribution of all other data structures shrinks furtherthe postings for a particular n-gram by document num-
By the time the corpus has reached 1 GB, the postind3er so we could store the difference between an individ-
list consumes over 6 GB of memory, while all other dataual posting’s document number and that of the previous
structures combined use less than 100 MB, or 1/60th theosting. These gaps are smaller in magnitude than the

Figure 3. Expanded similarity formula.

document numbers themselves, and have the additionaér gaps. However, it was considerably below optimal;

desirable property that they are smallest for large posthe gzip utility was able to compress the indices by a

ings lists with many entries. factor of two. We then switched to gamma compression,
These two strategies greatly reduced the size of thgelding files that were approximately the same size as

index file. Moreover, compression was more effectivethe result of usingzip on the original files that used

for n-grams than for words because the distribution ofhe first compression scheme.

term frequencies is more skewed for n-grams than fog 3.2 Simpl . | ith

words. For example, Figures 4 and 5 show the distribu="*" Imple compression algorithm

tion of term frequencies for 5-grams in the combined Based on the statistics discussed in Section 3.3.1, we

1 GB corpus and the distribution of integers describindirst considered a simple compression algorithm that

the “gap” between document numbers in postings. saves space for small numbers. We used a single byte to
represent numbers from 0 td-2, two bytes for num-
100% — bers Z to 2141, and four bytes for numbers in the range
80% ,/ 2140 2801,
60% | We got good compression results from this scheme.

We generated a large on-disk file containing all of the
documents in the ZIFF1, ZIFF2, AP1, and AP2 corpora
using this compression. The combined corpus has
L 960 MB of raw text, including 294,440 documents and
1x10° 1x10' 1x10? 1x10° 6x10° 889,125 unique n-grams, resulting in an on-disk file
5-gram count in document requiring 1.085 GB of storage. This provided better than
Figure 4. Distribution of 5-gram frequencies in a factor of four compression relative to the uncom-
postings. pressed index file. Additionally, query performance
improved greatly.
100% — This simple compression algorithm showed that we
can process n-gram queries against 1 GB of text data
quite well. However, we did not achieve as much com-
pression as we could. We noticed thaipp was able to
40% — compress our on-disk files by a factor of 2, suggesting
20% — that we could devise a compression scheme that
0% e a_pproached, or even surpassed, t.his Ie_/el of compres-
1109 1x101 1x10? 1x10° 1x10% 1x10° 1x106 sion. Doing so would reduce th<_a size of index files and
Gap between successive postings of a 5-gram improve performance by reducing the gmoynt of data
) o } . that must be read for each query, but might increase the
Figure 5. Distribution of gaps in postings. CPU time necessary to decompress postings lists.

The opportunities for compression were greatest fog 3.3 Gamma compression
n-gram counts — the count of a particular n-gram in a .

: . Our initial experiments showed that compression
single document is usually a very small number. In the xp) P
was very effective at reducing resource requirements,

corpora we studied, 97.77% of all postings had CountBut that we could achieve additional gains by using
of 5 or less, while over 77% had a count of exactly 1. We . . .
amma compression for our postings lists.

also looked at the distribution of document serial num® Gamma. Compbression represents an intecEs wo
ber gaps, shown in Figure 5. This graph shows that mOStartS' a unar cc?de for an ir?te followed bW;k-bit
serial number gaps are also relatively small. Howevel &S y a8 y

the curve falls off far more slowly than that for posting binary valuey. The value fok is determined by taking
counts. Half of the gaps were 8 or smaller, and 92.6‘%

he mth element of a vector of integers that is constant
were 255 or less. This distribution means that over 9204 °>° all compressed values (i.e., constant for a particu-
of all gap values could each be stored in a single byt

lar compression scheme). For a vectg, ky, ..., k[,
rather than the 4 bytes required by the default represethe value of a representationy can be calculated as
tation. o . -1,

Based on these findings, we implemented two dlffer—Dz 2 H+ y+1. While other codes such as delta
ent compression schemes in TELLTALE. The first wasl] =, U

simple to implement and provided reasonable compregsompression do exist, they are more complex and not as
sion for both n-gram counts and document serial NUMgicient for very small numbers such as those found in

40% —
20% —
0% AL T T

Cumulative % of all postings

80% —
60% —|

Cumulative % of all gaps

n-gram frequency counts. Since integers in this system Gamma compression also improves query perfor-
are not big and the gamma code is easy to implementiance by reducing the amount of data that must be read
we picked gamma coding to compress the posting list. for a single query. After loading the in-memory informa-
Even after selecting gamma compression, howevetjon for 960 MB of text, TELLTALE can compute and
we had to choose the best vector to use to compress aort about 300,000 documents’ similarity result at the
integers. To do this, we ran several experiments againsite of 50 seconds per thousand characters in the query.
the data shown in Figures4 and5 to compute th .
amount of space that would be required using sever;si'?"4 HanQIlng Qamma compressed
different vectors. The results of some of our experiments postings lists in memory
are shown in Table 2. As this table shows, optimal com- With the help of gamma compression, the com-
pression for n-gram counts and document gaps werngressed postings list is small enough to be loaded into
achieved with different vectors. To simplify implemen- today’s main memories if allocation is handled intelli-
tation, we chose the first vector in Table 2 as our comgently. Since about 1 GB of raw text data can be indexed
pression scheme, though future versions of TELLTALEIn under 700 MB, we can handle 1 GB of text data in
may use different vectors to compress different valudess than 750 MB of main memory, allowing for a small
sets. Even with our choice of a single vector, howeveramount of overhead. Doing so improved the perfor-
we were within 5.5% of the space required by the optimance by eliminating disk 1/O during a query, though
mal two-vector compression scheme. Moreover, théhe improvement was not as large as we had expected.
optimal scheme for a given corpus can only be discov- The major difficulty with handling the compressed
ered by experimentation such as that we performed opostings lists in memory is coping with the many bucket
our 1 GB corpus. Since the optimal choice for any parcapacities necessary — some postings lists will be only
ticular corpus may be different, we chose a simplea few bytes long, while others may require many thou-
scheme that performed well. sands of bytes. Additionally, these buckets must grow
dynamically as new documents are scanned in. These
requirements are best met using lists built from fixed

Vector N-gram Document | Total size © ” . . .
counts (MB) | gap (MB) |(MB) ize “chunks” of space connected in a linked list. The
overhead for this scheme is relatively small — fixed size
<0,1.2,..11,12, 87.7 409.1 496.8 chunks that can hold 32 bytes require only 4 bytes of
14,16,18,20,28> pointer overhead for an overhead of 12.5%. In addition,
<00.1.2,..7.8. 83.2 435.0 5187 fixed size ghunks waste some space be(;ause part of the
10,12,14,16,18,28> last chunk is unused. On average, this will waste half of
a chunk per n-gram, 16 bytes in our system. Thus, total
<0,0012,..,78, |823 460.2 54254 overhead for a system that scanned in the 1 GB AP-
10,12,14,16,18,28> ZIFF corpus would be 14 MB for unused chunk space
<0.2.4,681012, |96.6 3881 484.7 and about 62.5 MB for pointers. In futgre versions of
14,16,18,28> TELLTALE, we will attempt to reduce this overhead by
allowing multiple chunk sizes for maximum efficiency.
<0,2,3,6,9,12,15, |96.0 398.5 494.5 Operation using in-memory compressed postings
18,21,28> lists requires that the lists must be uncompressed before

they are used in similarity calculations. While this tech-
nique uses less memory than uncompressed postings

Using our gamma compression scheme with the vedists, it is somewhat slower because of the time needed
tor in the first line of Table 2, we generated a large inde0 UNCOMPress a postings l'St'.A 200 MHZ. Pe'."““m lap-
file covering ZIFF1, ZIFF2, AP1, and AP2. The raw textOP 1S capable of decompressing two million integers a

from these files was 960 MB, but the on-disk index Con_sec_onq; while th|_s SEEMS an Impressive. r?“mbe“ .most
milarity calculations must process ten million postings

sumed only 647 MB. While the table entry suggests that' . i . e
under 500 MB would be necessary, the table does n&Y More. T.hL.’S’ .decompre_ssmr.\ time contributes signifi-
include additional data structures necessary to store doggntly to §|m|I§r|ty calculation time. .

ument info and the n-gram headers; these structureﬁ By using in-memory gamma compression rather
make up the additional 150 MB. Since they are onl)} an uncompressed postings lists, TELLTALE can

read in at startup, however, we decided not to attempt tr&ttj#cet gs megjory ijsaget_by aNfeictorr] of four t?]r tmtﬁre
compress them. Our experiment gave a compressio ithout discarding information. Note, however, that the

ration of 0.67, which is nearly as goodaaip . originaITEL_LTALE uses slightly less memory for small
yasg corpora; this occurs because the overhead for the

Table 2. Index sizes for gamma compression vectors.

gamma compression version of TELLTALE is slightly ability to handle multilingual or slightly garbled docu-
higher. However, this higher overhead is more thamments. It is these advantages, combined with an ability
recovered as the amount of indexed text increases. to perform retrieval using full documents rather than rel-
The in-memory gamma compressed version alsatively short queries, that make TELLTALE a useful
provides increased speed compared to the on-disk veteol. However, there is still much work to be done with
sion. Comparisons with the original, uncompressed init. Because TELLTALE is the first system using n-grams
memory version are less relevant because the origin#that can handle a gigabyte of text, we hope to be able to
version can only handle very small corpora. Thus, wehow that n-grams are equal to or better than words as
focused our attention on the relative performance of thendexing terms. We are also currently performing exper-
gamma compressed postings lists on disk and in menments in using TELLTALE to index collections in non-
ory. We ran queries against a collection containing th&nglish languages ranging from European languages
257 MB of text in ZIFF1, which comprise 75,029 docu-such as French and Spanish to ideogram-based lan-
ments, 562,492 unique n-grams, and a total ofuages such as Chinese. Our preliminary results are
185,159,683 postings. We were limited to this sizepromising, but more investigation needs to be done.
because the machine on which the queries were run, a
two processor SGI Origin 200, had only 256 MB ofAcknowledgments
physical memory, and the use of virtual memory would The authors are grateful to the many people who
have resulted in unacceptably slow performance due tcontributed to this paper by giving us feedback and sug-
excessive paging. When the entire ZIFF1 corpus wagestions, including Claudia Pearce and Bill Rye at the
loaded into memory, it used 210 MB of memory, leav-Department of Defense and David Ebert at UMBC. Our
ing the rest for operating system use. As can be seen iasearch was supported in part by funding from the U.S.
Figure 6, in-memory gamma compression is twice a®epartment of Defense.
fast as on-disk gamma compression, though the differ-
ence is not as large as we had expected. This may be dreferences
to the high performance XFS file system used on th§l] Steve Lawrence and C. Lee Giles, “Searching the
SGI server on which the experiments were run. World Wide Web,”Science280(3), 3 April 1998,
pages 98 - 100.

0_. —*— In-memory + [2] Claudia Pearce_and Ethan Miller, “T_he TELL-
TALE Dynamic Hypertext Environment:
0 coe On-disk PRSI + . Approaches to Scalability,” iAdvances in Intelli-

gent HypertextJ. Mayfield and C. Nicholas, eds.
Lecture Notes in Computer Science, Springer-Ver-
lag, October 1997, pages 109 - 130.

BN W oA g
=}
|

Time to compute similarity (s)

0 [3] Robert R. Korfhage,Information Storage and
\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I . .
1 15 2 25 3 35 4 45 B Retrieva) QOhn Wll_ey & Sons, 1997. _
Size of query document (KB) [4] lan H. Witten, Alistair Moffat, and Timothy C.

Bell, Managing GigabytesVan Nostrand Rein-

Figure 6. Performance comparison of in-memory and
on-disk version with gamma compression. [5]

As the preceding experiments have shown, gamma
compression performs well for n-gram-based IR just as
it does for word-based schemes. However, we had to
adjust the gamma compression vectors to best compress
the postings lists generated for n-grams because docl8]
ment gaps and, particularly, occurrence count distribu-
tions are different between words and n-grams. Using
these techniques, we expanded TELLTALE's capability
from around 10 MB to over 1 GB while maintaining [7]
good query performance.

4 Conclusions and future work 18]
We greatly expanded TELLTALE's capacity and
improved its performance, without compromising its

hold, 1994.

Claudia Pearce and Charles Nicholas, “TELL-
TALE: Experiments in a Dynamic Hypertext Envi-
ronment for Degraded and Multilingual Data,”
Journal of the American Society for Information
ScienceApril 1996, pages 263 - 275.

Marc Damashek, “Gauging Similarity with n-
grams: Language-Independent Categorization of
Text,” Science67, 10 February 1995, pages 843 -
848.

Donna Harman, “The DARPA TIPSTER project,”
ACM SIGIR Forum26(2), Fall 1992, pages 26 -
28.

The Text Retrieval Conference. Information avail-
able athttp://trec.nist.gov

