

Techniques for Gigabyte-Scale N-gram Based
Information Retrieval on Personal Computers

Ethan Miller, Dan Shen, Junli Liu, Charles Nicholas, and Ting Chen
Computer Science and Electrical Engineering Department

University of Maryland Baltimore County
{elm,dshen,jliu,nicholas,tchen}@csee.umbc.edu

In this paper, we discuss the implementation techniques that allowed us to use n-gram based retrieval methods on
a gigabyte corpus on commodity personal computer hardware. While such techniques have been used before in word-
based systems, n-gram systems have different challenges primarily caused by the significantly larger number of
unique terms in the corpus.

Our work shows that using appropriately tuned gamma compression, extensible hash tables and significant
amounts of precalculation on the inverted index allows the indexing of a one gigabyte multilingual corpus in a com-
modity workstation with 256 MB of memory. Response time for full-document queries on this system is approximately
20 seconds for 1 KB documents while providing the same retrieval precision and recall as previous n-gram based sys-
tems. We also discuss the space-time tradeoffs we encountered in building a high performance n-gram based retrieval
engine. Because of the larger term count - our corpus had nearly 1 million unique terms and over 700 million post-
ings - we deliberately chose methods that reduced space at the cost of increasing retrieval time, primarily through on-
the-fly calculations and decompression. We found that, perhaps somewhat counter-intuitively, compressed on-disk
indices were actually faster than uncompressed indices because of the reduced time necessary to transfer information
off the disk.

1 Introduction

Scientists, researchers, reporters and the rest of
humanity all need to find documents relevant to their
needs from a growing amount of textual information.
For example, the World Wide Web currently has over
320 million indexable pages containing over 15 billion
words [1], and is growing at an astonishing rate. As a
result, information retrieval (IR) systems have become
more and more important. However, traditional IR sys-
tems for text suffer from several drawbacks, including
the inability to deal well with different languages, sus-
ceptibility to optical character recognition errors and
other minor mistakes common on the WWW, and reli-
ance on queries composed of relatively few keywords.

The TELLTALE information retrieval system [2]
was developed to address these concerns. TELLTALE
uses n-grams (sequences of

n

 consecutive Unicode char-
acters) rather than words as the index terms across
which retrieval is done. By using statistical IR tech-
niques, the TELLTALE system can index text in any
language; the current version has been used unmodified
for documents in English, French, Spanish, and Chi-
nese. Additionally, n-grams provide resilience against
minor errors in the text by allowing matches on portions
of words rather than requiring the entire word to match.
A third advantage of TELLTALE is that users need not
learn query languages and query optimization methods.

Instead, they can simply ask for “more documents like
the one I’ve got now,” allowing for greater ease-of-use.

Previously, however, the TELLTALE system was
unable to index large volumes of text. While traditional
word-based IR systems have a number of tricks and
tools at their disposal, many of these methods must be
modified or discarded when building n-gram based sys-
tems. This paper describes our successful efforts to
apply traditional techniques to an n-gram based IR sys-
tem, showing how we adapted traditional IR techniques
to n-grams. By using our techniques, we were able to
construct an n-gram based IR engine that permitted full-
document queries against a gigabyte of text while run-
ning on an inexpensive personal computer. These
improvements represent a hundred-fold increase in cor-
pus size over previous n-gram-based efforts. Moreover,
the compression techniques we adapted from word-
based IR systems reduced the size of the index file from
seven times larger than the text corpus to approximately
half the size of the original text, a fifteen-fold improve-
ment.

2 Background

Our work builds on a large body of research in infor-
mation retrieval covering both traditional word-based IR
systems and systems based around n-grams. In this sec-
tion, we discuss some of the most relevant previous

This paper appeared at the1999 International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, June 1999, pages 1410–1416.

work. Of course, a full treatment of prior work in infor-
mation retrieval would require a full book (if not more),
and such texts exist [3,4].

2.1 Word-based IR systems

There are many information retrieval systems in
existence, but space prevents us from mentioning more
than our specific system. We will briefly discuss TELL-
TALE; the reader is referred to [3] and [4] for a more
detailed treatment of information retrieval systems.

2.2 N-gram based IR using TELL-
TALE

TELLTALE [2,5] is a dynamic hypertext environ-
ment that provides full-text information retrieval from
text corpora using a hypertext-style user interface. The
most important difference between TELLTALE and the
systems described in the previous sections is that TELL-
TALE is n-gram-based while the others are word-based.
Because of its use of n-grams, TELLTALE has some
unique features including language independence and
garble tolerance.

An n-gram [6] is a character sequence of length

n

extracted from a document; typically,

n

 is fixed for a
particular corpus of documents and the queries made
against that corpus. To generate the n-gram vector for a
document, a window

n

 characters in length is moved
through the text, sliding forward one character at a time.
At each position of the window, the sequence of charac-
ters in the window is recorded. For example, the first
four 5-grams in the phrase “ character sequences…” are
“ char”, “chara”, “harac” and “aract”. In some schemes,
the window may be slid more than one character after
each n-gram is recorded.

Most information retrieval systems are word-based
because there are several advantages for word-based
systems over n-gram based systems. First, the number of
unique words is smaller than unique n-grams (for

n

>3)
in the same text corpus, as shown in Figure 1. As a
result, the index for an n-gram-based system will be
much larger than that of a word-based system. Second,
stemming techniques can be used in word-based sys-
tems but not in n-gram-based systems. However, n-
grams provide similar functionality by moving a win-
dow one character at a time, enclosing the stem alone at
some time.

Third, n-gram based systems don’t explicitly remove
stop words, though the importance of common n-grams
is reduced by standard statistical techniques such as cen-
troid subtraction or the use of TF/IDF weights. Addi-
tionally, our n-gram system doesn’t make use of
synonyms, though there is no reason why it couldn’t be
modified to do so.

At the same time, there are several advantages for
using n-grams. First, a system using n-grams can be
more garble tolerant. If a document is scanned using
OCR (Optical Character Recognition), there may be
some misread characters. For example, suppose “ozone”
is scanned as “a zone”. An OCR system may not recog-
nize this error, but an n-gram based retrieval engine will
still find the n-gram “zone “. From this we can see that
using a system based on n-gram technology can provide
garble tolerance.

Second, a system can achieve language indepen-
dence by using n-grams. In most word-based informa-
tion retrieval systems, there is a language dependency.
For example, in some Asian languages, different words
are not separated by spaces, so a sentence is composed
of many consecutive characters. Grammar knowledge is
needed to separate those characters into words, which is
a very difficult task to perform. By using n-grams, the
system does not need to separate characters into words.

3 Techniques for scalability

Because TELLTALE is n-gram based and the num-
ber of n-grams in a document is much larger than the
number of words in the same document, the index for
TELLTALE is much larger than that of a word-based
system. Thus, building a large-scale n-gram based
retrieval system is a technical challenge.

All of the performance figures reported in this paper
were measured by running on a Silicon Graphics
Origin200 with two 180 MHz MIPS R10000 proces-
sors, 256 MB of main memory, and 32 KB each of
instruction and data cache. While this may seem an
impressive machine, it is currently possible to purchase
a more powerful computer for under $5000 from com-
modity PC vendors. Thus, our techniques are applicable
to those who can’t afford large-scale computers as well

Figure 1. Number of unique terms (words and n-grams)
in corpora of varying sizes.

1x103

1x104

1x105

1x106

1x107

0 5 10 15 20 25 30 35

N
um

be
r

of
 te

rm
s

Corpus size (MB)

3-grams

4-grams

5-grams

6-grams

7-grams
8-grams

words

as to those who can, and we are currently porting our
code to run on Linux-based PCs.

3.1 Textual data used in experiments

To allow practical comparison of various algorithms
and techniques, we performed our experiments on real-
world collections of data obtained from TIPSTER [7], a
DARPA (Defense Advanced Research Projects
Agency)-funded program of research and development
in information retrieval and extraction. The TREC [8]
(Text REtrieval Conference) is part of the TIPSTER
Text Program, and provides a very large text data collec-
tion. Three types of text data from TREC are used in this
paper: a selection of computer magazines and journals
published by Ziff-Davis (ZIFF), the Associated Press
newswire (AP), and the Wall Street Journal (WSJ). Here
we use ZIFF1 to represent the collection from 1989's
ZIFF, ZIFF2 to represent the text data from 1988, AP1
to represent the text data from 1989's AP, AP2 to repre-
sent the data from 1988 and WSJ to represent the data
from 1989's Wall Street Journal.

Each corpus is composed of tens or hundreds of
individual files averaging one megabyte in length and
containing one or more documents. Individual docu-
ments within a file are separated by SGML (Standard
Generalized Mark-Up Language) tags. The overall char-
acteristics of the corpora on which we ran experiments
are summarized in Table 1. Note that the figures for
unique and total n-grams are calculated for

n

 = 5; we
used this value for

n

 in all of our experiments. We chose

n

 = 5 because this value of n gives reasonable retrieval
performance (precision and recall) for English language
documents without requiring too much memory.

3.2 Data structures

The primary data structures in TELLTALE are in-
memory data structures similar to those used in tradi-
tional word-based IR systems. The three hash tables,
one for n-grams, one for document information, and
another for file information, represent all of the informa-
tion gathered from the raw text scanned into TELL-

TALE. While all three data structures are crucial to our
system, the n-gram hash table and postings lists con-
sume by far the largest fraction of memory, as Figure 2
shows, and are thus the best candidates for compression.
However, we also “compressed” information in the doc-
ument and file hash tables to reduce overall space
requirements.

The file hash table provides a link between docu-
ments and the files that contain them. While it would be
possible to fold this information into the document hash
table, storing it separately results in a large memory sav-
ings at little cost because file names are long. For exam-
ple, a corpus with 500,000 documents of 2 KB apiece
might pack an average of 500 documents into each
1 MB file. If file names average 60 bytes in length, the
file table requires 60 + 4 = 64 bytes of data and 4 bytes
of overhead per file for a total of just 64 KB of storage.
On the other hand, storing a file name with each docu-
ment requires over 3 MB. Thus, large corpora benefit
greatly from the savings provided by a separate file
table. Additionally, this structure works well for systems
that don’t use traditional file systems. For example, a
system might optimize performance for access via the
WWW by consolidating references to a single URL
together; pointing all documents from a particular URL
to one place would make retrieval and caching simpler.

The n-gram hash table is the central data structure in
TELLTALE and, when the postings are included, the
one that requires the most memory. This data structure is
the one that is hardest to optimize for n-grams rather
than documents because of the far greater number of

ZIFF1 ZIFF2 AP1 AP2 WSJ

Documents

75,029 56,903 83,719 78,789 12,046

Unique
(thousands)

562.5 498.7 500.0 478.5 268.8

Total
(millions)

185.1 134.1 202.6 186.8 31.9

Size (MB)

257 180 260 240 40

Table 1. Statistics for the document collections.

Figure 2. Space consumed by different data structures,
assuming no compression.

1 10 40 180 1000

0

1000

2000

3000

4000

5000

6000

7000

File table

Document
table

N-gram
table

Postings

1 10 40 180 1000

0%
20%
40%
60%
80%

100%

both unique n-grams in the corpus and unique n-grams
in a document. For example, a typical 1 MB file from
the WSJ corpus has around 300 documents with over
500,000 postings — one posting for each different n-
gram in a document. When terms are words, however,
the same file has around 60,000 word postings, a reduc-
tion of more than a factor of 8. It is this difference that
makes it more difficult to build IR systems using n-
grams rather than words as terms.

In this version of TELLTALE, each posting consists
of a normalized frequency for n-gram

k

 in document

i

, a
pointer to document

i

, and a pointer to the next posting
for n-gram

k

. Thus, a naive implementation requires 12
bytes per posting on a machine that supports 32-bit
floating point numbers and 32-bit pointers. It is the
space required for postings that consumes the lion’s
share of memory for corpora of almost any size. In typi-
cal documents, the number of unique 5-grams is about
65%-75% of the total number of 5-grams, so a 4 KB
document will have 2500 - 3000 unique 5-grams, result-
ing in bytes of storage. On the
other hand, the word count for such a document will
total perhaps 800 words with perhaps 400 different
words — a reduction of an order of magnitude.

To obtain good performance on the cosine similarity
using these data structures, we broke the similarity for-
mula down as shown in Figure 3. Note that, in the final
equation, all of the terms with the exception of the first
term in the numerator can be precalculated. The remain-
ing term is non-zero only when a term appears in both
the query and a document in the corpus. Thus, we can
precompute all of the “constant” expressions in the for-
mula for each document, and only need compute the
sum of the term frequencies on the fly. Because there are
relatively few n-grams in common between any pair of
documents, this calculation can be done quickly once
the precomputation time has been invested.

As Figure 2 shows, by far the largest consumer of
space in an uncompressed index is the postings list.
Even for a small corpus of 1 MB, the postings list con-
sumes 75% of the space. For larger corpora, the relative
contribution of all other data structures shrinks further.
By the time the corpus has reached 1 GB, the postings
list consumes over 6 GB of memory, while all other data
structures combined use less than 100 MB, or 1/60th the

space. This is hardly unexpected — the number of
unique n-grams in a corpus grows slowly after the cor-
pus reaches a certain size because the number of unique
n-grams in English (or any other language) grows rap-
idly for the first few megabytes of text but considerably
more slowly for additional text. Moreover, some combi-
nations (such as “zzyqv”) are unlikely to occur in any
documents in a corpus (though this sentence shows that

any

 n-gram is possible in any document in a given lan-
guage...). In essence, the first few documents define the
“vocabulary,” but later documents add few new n-grams
to it. However, the number of postings grows linearly in
the number of documents, and consumes far more space
than document information or file information, both of
which also grow linearly.

Because the postings list was clearly the largest
impediment to scaling TELLTALE to handle gigabytes,
we spent most of our effort optimizing its usage. The
following sections describe our efforts.

3.3 Compression

While we could store uncompressed postings lists on
disk, this approach suffered from two drawbacks. First,
the resulting index file is huge — often six times the size
of the original corpus. Second, large postings lists take
longer to read than smaller, compressed, postings lists.
Since I/O is very slow compared to CPU instructions,
compressing the posting list results in two benefits:
lower disk storage utilization and faster similarity com-
putations due to reductions in the time needed to read a
bucket. We found that the reduction in I/O transfer time
more than outweighed the time needed to decompress
the postings lists.

3.3.1 Strategy

The original index file contained postings lists com-
posed a pair of numbers for each document in which the
n-gram occurred: an integer identifying the document
containing the n-gram and the normalized frequency for
the n-gram in the document. This strategy required
8 bytes for each posting, 4 bytes each for the document
number and a floating point number for the frequency.

We adopted techniques used in word-based IR sys-
tems to compress our postings lists. First, we converted
all of the n-gram frequencies into integers by storing the
actual count of n-grams in a document rather than the
normalized frequency. Since we already stored the num-
ber of n-grams in a document, it was a simple calcula-
tion to regenerate normalized frequency from the n-
gram count and size of the document. Second, we sorted
the postings for a particular n-gram by document num-
ber so we could store the difference between an individ-
ual posting’s document number and that of the previous
posting. These gaps are smaller in magnitude than the

Figure 3. Expanded similarity formula.

12 3000× 36000=

SI MC di d j,()
f ik f jk()

k
∑ f ikak()

k
∑– f jkak()

k
∑– ak

2

k
∑+

dik
2

k
∑ djk

2

k
∑

---=

document numbers themselves, and have the additional
desirable property that they are smallest for large post-
ings lists with many entries.

These two strategies greatly reduced the size of the
index file. Moreover, compression was more effective
for n-grams than for words because the distribution of
term frequencies is more skewed for n-grams than for
words. For example, Figures 4 and 5 show the distribu-
tion of term frequencies for 5-grams in the combined
1 GB corpus and the distribution of integers describing
the “gap” between document numbers in postings.

The opportunities for compression were greatest for
n-gram counts — the count of a particular n-gram in a
single document is usually a very small number. In the
corpora we studied, 97.77% of all postings had counts
of 5 or less, while over 77% had a count of exactly 1. We
also looked at the distribution of document serial num-
ber gaps, shown in Figure 5. This graph shows that most
serial number gaps are also relatively small. However,
the curve falls off far more slowly than that for posting
counts. Half of the gaps were 8 or smaller, and 92.6%
were 255 or less. This distribution means that over 92%
of all gap values could each be stored in a single byte
rather than the 4 bytes required by the default represen-
tation.

Based on these findings, we implemented two differ-
ent compression schemes in TELLTALE. The first was
simple to implement and provided reasonable compres-
sion for both n-gram counts and document serial num-

ber gaps. However, it was considerably below optimal;
the

gzip

 utility was able to compress the indices by a
factor of two. We then switched to gamma compression,
yielding files that were approximately the same size as
the result of using

gzip

 on the original files that used
the first compression scheme.

3.3.2 Simple compression algorithm

Based on the statistics discussed in Section 3.3.1, we
first considered a simple compression algorithm that
saves space for small numbers. We used a single byte to

represent numbers from 0 to 2

7

-1, two bytes for num-

bers 2

7

 to 2

14

-1, and four bytes for numbers in the range

2

14

 to 2

30

-1.
We got good compression results from this scheme.

We generated a large on-disk file containing all of the
documents in the ZIFF1, ZIFF2, AP1, and AP2 corpora
using this compression. The combined corpus has
960 MB of raw text, including 294,440 documents and
889,125 unique n-grams, resulting in an on-disk file
requiring 1.085 GB of storage. This provided better than
a factor of four compression relative to the uncom-
pressed index file. Additionally, query performance
improved greatly.

This simple compression algorithm showed that we
can process n-gram queries against 1 GB of text data
quite well. However, we did not achieve as much com-
pression as we could. We noticed that

gzip

 was able to
compress our on-disk files by a factor of 2, suggesting
that we could devise a compression scheme that
approached, or even surpassed, this level of compres-
sion. Doing so would reduce the size of index files and
improve performance by reducing the amount of data
that must be read for each query, but might increase the
CPU time necessary to decompress postings lists.

3.3.3 Gamma compression

Our initial experiments showed that compression
was very effective at reducing resource requirements,
but that we could achieve additional gains by using
gamma compression for our postings lists.

Gamma compression represents an integer

x

 as two
parts: a unary code for an integer

m

 followed by a

k

-bit
binary value

y

. The value for

k

 is determined by taking
the

m

th element of a vector of integers that is constant
across all compressed values (i.e., constant for a particu-
lar compression scheme). For a vector ,

the value of a representation

my

 can be calculated as

. While other codes such as delta

compression do exist, they are more complex and not as
efficient for very small numbers such as those found in

Figure 4. Distribution of 5-gram frequencies in
postings.

Figure 5. Distribution of gaps in postings.

0%

20%

40%

60%

80%

100%

1x100 1x101 1x102 1x103 6x103C
um

ul
at

iv
e

%
 o

f a
ll

po
st

in
gs

5-gram count in document

0%

20%

40%

60%

80%

100%

1x100 1x101 1x102 1x103 1x104 1x105 1x106

C
um

ul
at

iv
e

%
 o

f a
ll

ga
ps

Gap between successive postings of a 5-gram

k0 k1 … kn, , ,〈 〉

2
ki

i 0=

m 1–

∑
 
 
 

y 1+ +

n-gram frequency counts. Since integers in this system
are not big and the gamma code is easy to implement,
we picked gamma coding to compress the posting list.

Even after selecting gamma compression, however,
we had to choose the best vector to use to compress our
integers. To do this, we ran several experiments against
the data shown in Figures 4 and 5 to compute the
amount of space that would be required using several
different vectors. The results of some of our experiments
are shown in Table 2. As this table shows, optimal com-
pression for n-gram counts and document gaps were
achieved with different vectors. To simplify implemen-
tation, we chose the first vector in Table 2 as our com-
pression scheme, though future versions of TELLTALE
may use different vectors to compress different value
sets. Even with our choice of a single vector, however,
we were within 5.5% of the space required by the opti-
mal two-vector compression scheme. Moreover, the
optimal scheme for a given corpus can only be discov-
ered by experimentation such as that we performed on
our 1 GB corpus. Since the optimal choice for any par-
ticular corpus may be different, we chose a simple
scheme that performed well.

Using our gamma compression scheme with the vec-
tor in the first line of Table 2, we generated a large index
file covering ZIFF1, ZIFF2, AP1, and AP2. The raw text
from these files was 960 MB, but the on-disk index con-
sumed only 647 MB. While the table entry suggests that
under 500 MB would be necessary, the table does not
include additional data structures necessary to store doc-
ument info and the n-gram headers; these structures
make up the additional 150 MB. Since they are only
read in at startup, however, we decided not to attempt to
compress them. Our experiment gave a compression
ration of 0.67, which is nearly as good as

gzip

.

Gamma compression also improves query perfor-
mance by reducing the amount of data that must be read
for a single query. After loading the in-memory informa-
tion for 960 MB of text, TELLTALE can compute and
sort about 300,000 documents’ similarity result at the
rate of 50 seconds per thousand characters in the query.

3.3.4 Handling gamma compressed
postings lists in memory

With the help of gamma compression, the com-
pressed postings list is small enough to be loaded into
today’s main memories if allocation is handled intelli-
gently. Since about 1 GB of raw text data can be indexed
in under 700 MB, we can handle 1 GB of text data in
less than 750 MB of main memory, allowing for a small
amount of overhead. Doing so improved the perfor-
mance by eliminating disk I/O during a query, though
the improvement was not as large as we had expected.

The major difficulty with handling the compressed
postings lists in memory is coping with the many bucket
capacities necessary — some postings lists will be only
a few bytes long, while others may require many thou-
sands of bytes. Additionally, these buckets must grow
dynamically as new documents are scanned in. These
requirements are best met using lists built from fixed
size “chunks” of space connected in a linked list. The
overhead for this scheme is relatively small — fixed size
chunks that can hold 32 bytes require only 4 bytes of
pointer overhead for an overhead of 12.5%. In addition,
fixed size chunks waste some space because part of the
last chunk is unused. On average, this will waste half of
a chunk per n-gram, 16 bytes in our system. Thus, total
overhead for a system that scanned in the 1 GB AP-
ZIFF corpus would be 14 MB for unused chunk space
and about 62.5 MB for pointers. In future versions of
TELLTALE, we will attempt to reduce this overhead by
allowing multiple chunk sizes for maximum efficiency.

Operation using in-memory compressed postings
lists requires that the lists must be uncompressed before
they are used in similarity calculations. While this tech-
nique uses less memory than uncompressed postings
lists, it is somewhat slower because of the time needed
to uncompress a postings list. A 200 MHz Pentium lap-
top is capable of decompressing two million integers a
second; while this seems an impressive number, most
similarity calculations must process ten million postings
or more. Thus, decompression time contributes signifi-
cantly to similarity calculation time.

By using in-memory gamma compression rather
than uncompressed postings lists, TELLTALE can
reduce its memory usage by a factor of four or more
without discarding information. Note, however, that the
original TELLTALE uses slightly less memory for small
corpora; this occurs because the overhead for the

Vector
N-gram

counts (MB)
Document
gap (MB)

Total
(MB)

<0,1,2,...,11,12,
14,16,18,20,28>

87.7 409.1 496.8

<0,0,1,2,...,7,8,
10,12,14,16,18,28>

83.2 435.0 518.2

<0,0,0,1,2,...,7,8,
10,12,14,16,18,28>

82.3 460.2 542.5

<0,2,4,6,8,10,12,
14,16,18,28>

96.6 388.1 484.7

<0,2,3,6,9,12,15,
18,21,28>

96.0 398.5 494.5

Table 2. Index sizes for gamma compression vectors.

gamma compression version of TELLTALE is slightly
higher. However, this higher overhead is more than
recovered as the amount of indexed text increases.

The in-memory gamma compressed version also
provides increased speed compared to the on-disk ver-
sion. Comparisons with the original, uncompressed in-
memory version are less relevant because the original
version can only handle very small corpora. Thus, we
focused our attention on the relative performance of the
gamma compressed postings lists on disk and in mem-
ory. We ran queries against a collection containing the
257 MB of text in ZIFF1, which comprise 75,029 docu-
ments, 562,492 unique n-grams, and a total of
185,159,683 postings. We were limited to this size
because the machine on which the queries were run, a
two processor SGI Origin 200, had only 256 MB of
physical memory, and the use of virtual memory would
have resulted in unacceptably slow performance due to
excessive paging. When the entire ZIFF1 corpus was
loaded into memory, it used 210 MB of memory, leav-
ing the rest for operating system use. As can be seen in
Figure 6, in-memory gamma compression is twice as
fast as on-disk gamma compression, though the differ-
ence is not as large as we had expected. This may be due
to the high performance XFS file system used on the
SGI server on which the experiments were run.

As the preceding experiments have shown, gamma
compression performs well for n-gram-based IR just as
it does for word-based schemes. However, we had to
adjust the gamma compression vectors to best compress
the postings lists generated for n-grams because docu-
ment gaps and, particularly, occurrence count distribu-
tions are different between words and n-grams. Using
these techniques, we expanded TELLTALE’s capability
from around 10 MB to over 1 GB while maintaining
good query performance.

4 Conclusions and future work

We greatly expanded TELLTALE’s capacity and
improved its performance, without compromising its

ability to handle multilingual or slightly garbled docu-
ments. It is these advantages, combined with an ability
to perform retrieval using full documents rather than rel-
atively short queries, that make TELLTALE a useful
tool. However, there is still much work to be done with
it. Because TELLTALE is the first system using n-grams
that can handle a gigabyte of text, we hope to be able to
show that n-grams are equal to or better than words as
indexing terms. We are also currently performing exper-
iments in using TELLTALE to index collections in non-
English languages ranging from European languages
such as French and Spanish to ideogram-based lan-
guages such as Chinese. Our preliminary results are
promising, but more investigation needs to be done.

Acknowledgments

The authors are grateful to the many people who
contributed to this paper by giving us feedback and sug-
gestions, including Claudia Pearce and Bill Rye at the
Department of Defense and David Ebert at UMBC. Our
research was supported in part by funding from the U.S.
Department of Defense.

References

[1] Steve Lawrence and C. Lee Giles, “Searching the
World Wide Web,”

Science

280

(3), 3 April 1998,
pages 98 - 100.

[2] Claudia Pearce and Ethan Miller, “The TELL-
TALE Dynamic Hypertext Environment:
Approaches to Scalability,” in

Advances in Intelli-
gent Hypertext

, J. Mayfield and C. Nicholas, eds.
Lecture Notes in Computer Science, Springer-Ver-
lag, October 1997, pages 109 - 130.

[3] Robert R. Korfhage,

Information Storage and
Retrieval

, John Wiley & Sons, 1997.
[4] Ian H. Witten, Alistair Moffat, and Timothy C.

Bell,

Managing Gigabytes

, Van Nostrand Rein-
hold, 1994.

[5] Claudia Pearce and Charles Nicholas, “TELL-
TALE: Experiments in a Dynamic Hypertext Envi-
ronment for Degraded and Multilingual Data,”

Journal of the American Society for Information
Science

, April 1996, pages 263 - 275.
[6] Marc Damashek, “Gauging Similarity with n-

grams: Language-Independent Categorization of
Text,”

Science

267

, 10 February 1995, pages 843 -
 848.

[7] Donna Harman, “The DARPA TIPSTER project,”

ACM SIGIR Forum

26

(2), Fall 1992, pages 26 -
 28.

[8] The Text Retrieval Conference. Information avail-
able at

http://trec.nist.gov

.

Figure 6. Performance comparison of in-memory and
on-disk version with gamma compression.

•
•••

•

+
+

+
+

+

0

10

20

30

40

50

1 1.5 2 2.5 3 3.5 4 4.5 5T
im

e
to

 c
om

pu
te

 s
im

ila
rit

y
(s

)

Size of query document (KB)

• In-memory

+ On-disk

