
RAMA: A FILESYSTEM FOR MASSIVELY
PARALLEL COMPUTERS

Ethan L. Miller and Randy H. Katz

University of California, Berkeley
Berkeley, California

ABSTRACT

This paper describes a file system design for massively
parallel computers which makes very efficient use of a
few disks per processor. This overcomes the traditional
I/O bottleneck of massively parallel machines by stor-
ing the data on disks within the high-speed interconnec-
tion network. In addition, the file system, called
RAMA, requires little inter-node synchronization, re-
moving another common bottleneck in parallel proces-
sor file systems. Support for a large tertiary storage
system can easily be integrated into the file system; in
fact, RAMA runs most efficiently when tertiary storage
is used.

INTRODUCTION

Disk-based file systems are nothing new; they have
been used for over thirty years. However, two develop-
ments in the past few years have changed the way com-
puters use file systems—massive parallelism and
robotically-controlled tertiary storage. It is now possi-
ble to have a multi-terabyte file system being accessed
by hundreds of processors concurrently. Current disk
file systems are not suited well to this environment.
They make many speed, capacity, and erasability as-
sumptions about the characteristics of the file storage
medium and about the stream of requests to the file sys-
tem. These assumptions held with increases in disk
speed and processor speed. However, massively paral-
lel machines may have hundreds of processors access-
ing a single file in different places, and will require data
to come from a multi-terabyte store too large to cost-ef-
fectively fit on disk. The changes in access patterns to
the file system and response times of tertiary storage
media require a new approach to designing file sys-
tems.

The RAMA (Rapid Access to Massive Archive) file
system differs from a standard file system in that it
treats the disk as merely a cache for the tertiary storage
system. Because it relies on optical disk, tape, and other
mass storage devices to hold the “true” copies of each
file, the disk file system may use different, more effi-
cient methods of arranging data.

This paper describes the design of the RAMA file sys-
tem. The first section provides some background on rel-
evant file systems. Next, we detail the design of the
disk-based portion of the file system. We then discuss

the advantages of the system, and some possible draw-
backs. We conclude with future directions for research.

PREVIOUS WORK

There have been few file systems truly designed for
parallel machines. While there have been many mas-
sively parallel processors, most of them have used uni-
processor-based file systems. These computers
generally perform file I/O through special I/O interfac-
es and employ a front-end CPU to manage the file sys-
tem. This method has the major advantage that it uses
well-understood uniprocessor file systems; little addi-
tional effort is needed to support a parallel processor.
The disadvantage, however, is that bandwidth to the
parallel processor is generally low, as there is only a
single CPU managing the file system. Bandwidth is
limited by this CPU’s ability to handle requests and by
the single channel into the parallel processor. Nonethe-
less, systems such as the CM-2 use this method.

Some parallel processors do use multiprocessor file
systems. Generally, though, these systems make a dis-
tinction between computing nodes and file processing
nodes. This is certainly a step in the right direction, as
file operations are no longer limited by a single CPU.
These systems, however, are often bottlenecked by cen-
tralized control. Additionally, there is often a strict di-
vision between I/O nodes and processing nodes. This
unnecessarily wastes CPU cycles, as the I/O nodes are
idle during periods of heavy computation and the pro-
cessing nodes are idle during high I/O periods. The
CM-5 is an example of this type of file system architec-
ture [1]. The Intel iPSC/2 also uses this arrangement of
computation and I/O nodes [2]. In the iPSC/2, data was
distributed among many I/O nodes. However, I/O ser-
vices ranonly on I/O nodes, scaling performance by
just that number. This arrangement works well if I/O
needs are modest, but costs too much for a large system
with thousands of computation nodes. Such a system
would need hundreds or thousands of distinct I/O nodes
as well, requiring additional processors and a larger in-
terconnection network, and increasing the machine’s
cost.

The Bridge file system [3] is one example of a truly par-
allel file system. In it, each processor has a disk, distrib-
uting the file system across the entire parallel computer.
Bridge showed good performance, but it required that
computation move to where the data actually resided
for optimal performance. This approach does not work
well for supercomputing applications such as climate
models. For these problems, data layout is critical, as
interprocessor communication must be optimized. Ad-
ditionally, this arrangement fails when a single file sys-
tem must be accessed by both workstations and high-
performance computers. The authors reported little
speedup for “naive” use of the file system, but such use
is necessary if workstations are to share a file system

Ethan L. Miller
This paper appeared at the 12th IEEE Symposium on Mass Storage Systems, Monterey, CA, April 1993, pages 163–168.

with a parallel computer.

In [4], the authors describe a hashed-index file system
for a computer with many diskful nodes. They note that
the lack of a centralized index structure removes a ma-
jor bottleneck, and found that they got nearly linear
speedup as they increased the number of nodes with
disks. The file system is aimed primarily at database-
type workloads, however, as it does not consider se-
quential reads. Their idea is sound, though, and similar
to the RAMA design presented in this paper.

RAMA FILE SYSTEM DESIGN

The RAMA file system is designed to provide high-
bandwidth access for large files while not overly de-
grading performance for small files. It is thus best used
for scientific computing environments, which require
many files tens or hundreds of megabytes long [5]. The
file system scales well to multiprocessors with hun-
dreds of CPU nodes, each with one or more disks. Be-
cause little synchronization between file system CPUs
is necessary, there will be little performance falloff as
more CPUs are added. Figure 1 shows what hardware
running the RAMA file system might look like.

The file system may span as many different disks and
processors as desired. There are no intrinsic limitations
on how large the file system may get, since RAMA
keeps very little system-wide state. Each node must
know how to convert a (bitfile identifier, offset) pair
into a destination node, and nothing more. All other
state information is kept locally on each node, and ob-
tained by other nodes only when needed. A node may
cache data and state that does not pertain to its local
disk; the node that owns the data manages the consis-
tency using any scheme for keeping distributed data
consistent. This creates a bottleneck if many nodes
share a single piece of data, but it allows many concur-
rent requests for different data. In particular, different

Figure 1. Typical hardware configuration for
running the RAMA file system hardware

nodes can share distinct parts of the same file without
encountering a bottleneck as long as the parts of the file
are on different disks. This scheme will be explained
shortly.

Tertiary storage is integrated into RAMA via user-level
storage managers. Whenever a block of data is not
found on disk, one of these processes is queried to find
the data on tertiary storage. Clearly, this method intro-
duces longer latency than a kernel-based storage man-
ager would. However, latency to tertiary storage is
already well over a second; the additional few millisec-
onds will make little difference in overall request laten-
cy. Additionally, user-level storage managers can be
changed more easily to accommodate new devices and
new algorithms for managing file migration, as the ker-
nel need not be recompiled.

RAMA fits well into the Mass Storage Systems Refer-
ence Model [6]. RAMA itself acts as a bitfile server and
storage server for magnetic disk. The user-level tertiary
storage managers are bitfile servers for tertiary storage
devices; however, they do not necessarily act as storage
servers for these devices.

Data layout

In RAMA, the disk acts as a cache for tertiary storage.
Unlike many file system caches, RAMA’s disk is a set-
associative cache. As a result, any file block can only be
placed in a subset of all the disk blocks in the system.
This subset is found using a hashing algorithm based
solely on the file’s unique identifier and the block’s off-
set within the file. Since this is a simple algorithm that
does not depend on any dynamically-changing global
information, each node can have its own independent
copy of the algorithm. No interprocessor synchroniza-
tion is necessary to decide where on disk a needed file
block is located. This holds true regardless of the size
of the file, and regardless of the size of the RAMA file
system.

Data blocks in RAMA are stored indisk lines, which
consist of one or more file blocks. Each disk line has a
line descriptor describing the data in the line’s blocks,
acting as a “table of contents” for the disk line. The line
descriptor keeps the file identifier, block number, last
access time, last modification time, and several flags
for each file block in the disk line. Figure 2 shows the
structure of a disk line and line descriptor. Typically, a
disk line will have hundreds to a few thousand file
blocks in it; performance implications of this choice
will be discussed later. Since file blocks are 4-8 KB,
each disk line is several megabytes long; thus, a single
disk has multiple disk lines on it.

Data placement in RAMA

One major innovation in the RAMA design was moti-
vated by a simple observation—file metadata in UNIX
falls into two categories, both of which are stored in the
inode and indirect blocks in standard UNIX file sys-
tems. The first type of metadata, intrinsic metadata, is
information that describes the data in the file. This data
includes file modification and access times, owner and
protection, and file size. Because it describes the data it-
self and not its placement, this type of metadata must be
kept with the file regardless of the medium the file is
physically stored on. Positional metadata is the second
type of metadata. This information tells the operating
system where to find the bits contained in the file. In a
UNIX system, this metadata is contained in the direct
block pointers in the inode and in indirect blocks.
RAMA treats and stores the two types of metadata dif-
ferently, unlike UNIX systems which store both types
of metadata in the inode.

In RAMA, intrinsic metadata is stored at the start of a
file’s data. Thus, the CPU responsible for the first few
blocks of the file also manages the file’s timestamps
and other information about it. This arrangement has
the disadvantage of slowing down directory scans such
asls , but has little effect during the time when a file is
actually being read or written. Since high-performance
computers spend far more time accessing file data than
looking for the files, this is a good tradeoff for a mas-
sively parallel file system.

As already discussed, positional metadata for file
blocks on disk is contained in the hashing algorithm and
the line descriptors. Each file block resident on disk re-
quires about 4 words of data in a line descriptor. If file
blocks are 8 KB long, 0.2% of the disk space in the file
system will be occupied by positional metadata—an ac-
ceptable overhead.

RAMA’s arrangement of metadata provides several ad-
vantages for massively parallel systems. First, position-
al metadata is guaranteed to be near the data it

Figure 2. Structure of a disk line in RAMA.

describes, since disk lines occupy logically contiguous
disk sectors. Thus, little or no seek time is necessary be-
tween accessing a file block’s positional metadata and
reading or writing the actual file data. This is not a new
idea, though. The BSD 4.3 file system [7], for example,
uses the same concept and keeps inodes near the files
they describe.

This arrangement of metadata has another advantage.
Blocks of a file are independent from each other and
can be read and written by different CPUs with little in-
terprocessor synchronization. Most file operations up-
date little file-intrinsic metadata. Reads only change
timestamps, while writes may also change file length.
File length changes, however, do not require synchro-
nization; the node responsible for keeping track of the
file length simply remembers the largest size it has been
told. As a result, different CPUs in a massively parallel
computer may read or write two different sections of
the same file without serializing their request.

Allowing each block to be accessed independently pro-
vides excellent parallelism; however, large sequential
reads and writes must be broken up. Most file systems
optimize data placement so large file accesses can be
done with few seeks. This can be done in RAMA as
well by adjusting the hashing algorithm. Instead of as-
signing each file block to a different disk line, the algo-
rithm can be adjusted to map several consecutive
blocks of the same file to the same line. This “sequen-
tiality parameter” can be adjusted to trade off between
faster sequential access and conflict problems. If too
many consecutive blocks from a single file go to the
same disk line, the line will be unable to hold much oth-
er data that hashes to the same line, degrading perfor-
mance by forcing the use of tertiary storage. On the
other hand, too few sequential blocks in the same line
degrades performance by requiring more seeks. Simu-
lation will determine the relationship between these
two effects.

Another factor in data placement is the arrangement of
data blocks within a disk line. Sequential blocks from
the same file might be scattered around within the disk
line, which holds hundreds of data blocks. This will
provide suboptimal performance, as reading sequential
blocks from a file would require rotational and head
switch delays. However, this can easily be remedied.
Recall that only the processor directly attached to the
disk actually knows where an individual file block is
actually stored on disk. If the disk is idle for even a
short period of time, its disk lines may be cleaned up.
This process is similar to cleaning in a log-structured
file system [8], but it is not necessary for operation. Un-
like an LFS, RAMA can run without cleaning, as clean-
ing only optimizes file block placement within a disk
line. There are data integrity issues involved with reor-
ganizing a disk line; however, these may be solved by
having few spare disk lines on each disk. Instead of
overwriting a disk line in place, write it to a different

disk line and mark the original as the new spare.

Tertiary storage and RAMA

RAMA is designed to be used in high-performance
computing environments requiring many terabytes of
storage. File migration to and from slower, cheaper me-
dia must be well integrated into the file system. RA-
MA’s data layout on disk facilitates such migration.

Each block in a disk line may be in one of three states—
clean, dirty, or free. Free blocks are just that. They are
always available to write new data to. Clean blocks are
those that have not been modified since they were writ-
ten to tertiary storage. This includes both blocks that
have been written back to archive and those that have
been retrieved from tertiary storage. If there are no free
blocks, clean blocks may be reclaimed for new data, in
order of last access time. A copy of data in these blocks
exists elsewhere, so it can be retrieved if it is needed lat-
er. A migration manager may change the last access
time of a clean block to change the order in which valid
blocks are reclaimed (this does not affect a file’s last ac-
cess time, however). Finally, dirty blocks are immune
from overwriting. As a result, dirty blocks must be con-
verted to clean or free blocks faster than the overall
write rate. This simply means that migration from disk
to tertiary storage must, on average, be faster than the
rate that long-term data is created.

Migration from secondary to tertiary storage is man-
aged by user-level processes. There may be more than
one of these processes, but they will likely be coordi-
nated to avoid duplication of effort. This is not, howev-
er, a requirement. These processes, calledmigration
managers, direct the copying of files from secondary to
tertiary storage. RAMA has special hooks into the file
system to allow this; in particular, these processes are
allowed to change the state of a file block, marking
dirty blocks as clean. These managers may also adjust
the modification time of a clean block so it will be more
or less likely to be written over if more disk space is
needed.

A typical migration manager searches through every
disk line looking for dirty file blocks older than a cer-
tain time. This finds file identifiers that are good candi-
dates for migration to a lower level of the hierarchy.
This task is easily parallelizable, using one low-level
migration manager for each disk. Each low-level pro-
cess reads and scans all of the line descriptors on a sin-
gle disk. This is not a long procedure; a 1 GB disk has
less than 4 MB of line descriptors which may be read
and scanned in a few seconds. The results from all of
the low-level migration managers are combined by a
high-level migration manager. This migration process
decides which files will be sent to tertiary storage, and
manages their layout on tertiary media. It also optimiz-
es scheduling for the tertiary media readers, trying to

minimize the number of media switches.

Once a file has been written to tertiary storage, its
blocks become available for reuse. However, these disk
blocks are not immediately freed; instead, they are
marked as clean so they may be reclaimed if necessary.
There is usually no reason to free blocks once they are
safely stored on tertiary media, as they might satisfy a
future file request. However, the blocks’ modification
time might be modified. The migration manager could,
for example, decide to preferentially keep blocks from
small files on disk. If so, it would mark clean file blocks
from large files as being older than blocks of the same
age from small files. This will not confuse the file sys-
tem, as a whole file’s modification date remains un-
changed, as does the modification date for dirty blocks.
Only clean blocks which need not be written to tertiary
storage may have their last access dates changed.

A typical file access

To make either a read or a write request for a file in
RAMA, a node first hashes the (bitfile ID, block num-
ber) pair to decide which disk line the data will be
found in. The request is then sent to that node, and the
requesting node does nothing further until the request
completes and the data is ready.

Once the node with the data receives the request, it
reads in the line descriptor for the disk line with the de-
sired data (if the line descriptor is not yet cached in
memory). For a file read, the line descriptor is searched
for an entry that matches the desired bitfile ID and
block number. If it is found, the block is read from disk
and returned to the requesting node. If it is not found, a
message is sent to the tertiary storage manager request-
ing the block.

Writes follow a path similar to reads, except that the
procedure for a “miss” is different. Instead of sending a
message to the tertiary storage manager, the file system
writes the data into the disk line and updates the line de-
scriptor. Blocks marked free are used first; if none are
available, clean blocks are used in order of desirability
as set by the migration manager when the blocks were
written to tertiary storage. If all of the blocks in a line
are dirty, RAMA sends an emergency message to the
migration manager, requesting that the line be cleaned.
The request cannot finish until this is done. This last re-
sort is similar to thrashing in a CPU cache, and exhibits
poor performance.

IMPLEMENTATION ISSUES

Hashing algorithm

As [3] and [4] noted, parallel file systems without bot-

tlenecks can achieve near-linear speedup if data is dis-
tributed well among all diskful nodes. A file system for
scientific computation introduces additional problems,
however. The first is sequential access. Most scientific
computation involves large sequential reads and writes
to the I/O system [5], so these requests must run quick-
ly. If each block lives on a different processor-disk pair,
a single half-megabyte read would need to contact 64
different nodes. Since there is a per-request overhead
for each disk, this approach is inefficient. Also, it may
excessively congest the interconnection network, as a
single I/O sends messages to many different nodes. The
disks, too, are being used inefficiently if many process-
es are using the file system. Instead of few large re-
quests, disks see many small requests and spend all
their time seeking to the correct locations.

To fix this problem, we adjust the hashing algorithm to
keep sequential blocks from the same file in the same
disk line. In the ideal case, all of these blocks could be
read without any seeks. This will often not be the case,
though, since the disk line will become fragmented.
Even so, a disk line occupies only a few cylinders, so
seeks between sequential blocks in a file are mini-
mized. Additionally, a disk line can be reorganized to
put related blocks together. As noted above, this can be
done without notifying any other processors or disks.
One open question, then, is how many consecutive
blocks from the same file to put into a single disk line.
If the number is too small, interconnection network and
CPU overhead become too high. However, if the num-
ber is too high, there will be little speedup for large
reads since different requests for the same file must go
to the same location and be serialized. A high number
may also cause pollution of a disk line, as a single file’s
blocks can occupy a large fraction of an entire line,
crowding out other files’ blocks.

Interconnection network congestion

Our initial design assumes that the interconnection net-
work will not be the bottleneck for the file system. We
feel that this is a valid assumption because a typical net-
work will run at over 10 MB/sec, while a small inex-
pensive disk transfers data at only 1-2 MB/sec.
However, this does not take network congestion into
account. If both requests and data to fulfill those re-
quests are evenly spread around the parallel processor,
congestion will not be a constant problem. However,
we will examine the effects of temporary “hot spots” in
the file system. In the simulation in [4], hot spots did
not present a major problem.

Data integrity and availability

As with any new file system, data integrity is a major
issue. The problem is especially acute in RAMA, since
a single file may be spread over many disks run by
many different processors. Similarly, data availability

becomes a problem when parts of a single file are stored
in many different places, as the file is unavailable if any
of those disks or processors is down.

Data integrity is the more important issue, as a file sys-
tem must never lose data entrusted to it. RAMA must
ensure that writing a new block of a file is an atomic op-
eration. This can present a problem, since there may be
two separate disk I/Os to write a file block to disk. The
line descriptor must be updated, and the block itself
must be written to disk. If only one operation is com-
pleted, the file system is in an inconsistent state. In a
high-performance computing environment, losing the
last few seconds of file I/O is not fatal, as long as the ap-
plication knows that the loss occurred.

We have come up with several options for insuring that
the file system remains consistent. The first writes the
line descriptor in two passes, writing any file blocks be-
tween the passes. In the first pass, all blocks being writ-
ten are marked as free. The new blocks themselves are
then written to disk. The second pass writes the descrip-
tor with the new table of contents. If a crash occurs be-
fore the descriptor is written the second time, all of the
new file blocks are instead marked as free. This means
that their data is lost, but the file system remains consis-
tent. This method works well, but it requires three sep-
arate disk I/Os to write a file block.

We believe that a better option is to use self-identifying
blocks on disk. Each block would reserve a few words
to record the file identifier and block number that the
data in the block corresponds to. This method has sev-
eral major advantages. First, crashes no longer present
any problem since the line descriptor can be rebuilt by
scanning the disk line. The line descriptor is then kept
only to make accessing the disk more efficient. Re-
building the line descriptor after each crash may take
some time, however. To avoid doing this, the file sys-
tem assumes that all descriptors are correct, and only
rebuilds one when it finds a disagreement between a
line descriptor and the self-identification for a block in
its line. Another advantage for this method is that line
descriptors may be written back lazily. This trades off
recovery time after a crash with efficiency during nor-
mal operation. All of these benefits are countered by a
few drawbacks, however. A file block is no longer the
same size as a disk block, and file blocks are no longer
a power of 2 bytes long. Many programs are optimized
to take advantage of specific file block sizes, and it is
not clear what effect changing the size will have. An-
other minor problem is the increased amount of meta-
data the file system will need. The overhead for
metadata would double with a naive implementation
that keeps a copy of all metadata in the file block as
well. Keeping a full copy is unnecessary, though, and
this overhead is only an additional 0.2% in any case.

File availability is another problem that RAMA must

conquer. Uniprocessor file systems spanning more than
one disk may arrange disks in a RAID [9] to keep data
available even when a disk has failed. It should be pos-
sible to use similar techniques for RAMA. However, it
is not clear how they would be integrated into the file
system, since each node may rearrange its own disks
without notifying other nodes. Under the current de-
sign, then, files are unavailable when a processor or
disk is down. This is a serious problem, and will be ad-
dressed by future research.

FUTURE WORK

RAMA is currently a rough file system design. We are
implementing a simulator to test our ideas and refine
the design. The simulator will show us whether RAMA
does indeed provide a linear speedup with more proces-
sors, and whether network congestion is likely to be a
problem.

Once our design has been refined by feedback from
simulation results, we hope to build a real file system on
a parallel processor with a disk at each node. This will
allow us to benchmark our file system using real appli-
cations. Additionally, it will show us whether there are
long-term problems that might not show up in simula-
tions covering only a few days of simulated time.

There is also much work to be done integrating tertiary
storage with RAMA. In this paper, we have said little
about the user-level migration managers that will move
data between disk and tertiary storage. Algorithms for
these programs need to be developed, using data from
studies such as [10] and [11]. A RAMA system with a
500 MB disk on each of 256 nodes will have a 125 GB
file system; this is somewhat larger than that on most
high-performance computers today. The large disk
space may permit new prefetching algorithms that re-
duce the number of requests that stall waiting for data
from tertiary storage.

CONCLUSIONS

This paper has presented the design of RAMA, a mas-
sively parallel file system to support scientific compu-
tation. RAMA’s design allows it to provide high
bandwidth to computationally intensive applications
such as climate modeling and computational fluid dy-
namics while still providing efficient support for many
workstations. By spreading data across disks and allow-
ing blocks of a file to be accessed independently,
RAMA provides a scalable file system for the massive-
ly parallel computers that will solve the large problems
of the future.

BIBLIOGRAPHY

1. CM-5 Technical Summary. Thinking Machines Cor-
poration, October 1991.

2. Paul Pierce. "A concurrent file system for a highly
parallel mass storage system.” InProceedings of
the 4th Conference on Hypercubes, 1989, pp. 155-
160.

3. Peter Dibble, Michael Scott, and Carla Schlatter El-
lis. “Bridge: a high-performance file system for par-
allel processors.” InProceedings of the 8th
International Conference on Distributed Computing
Systems, June 1988, pp. 154-161.

4. Amnon Barak, Bernard Galler and Yaron Farber. "A
holographic file system for a multicomputer with
many disk nodes.” Technical Report 88-6, Dept. of
Computer Science, Hebrew University of Jerusa-
lem, May 1988.

5. Ethan Miller and Randy Katz. "Input/output behavior
of supercomputing applications.” InProceedings of
Supercomputing '91", November 1991, pp. 567-
576.

6. Sam Coleman and Steve Miller. “Mass storage sys-
tem reference model: Version 4.” IEEE Technical
Committee on Mass Storage Systems and Technol-
ogy, May 1990.

7. Marshall Mckusick, William Joy, Samuel Leffler,
and Robert Fabry. “A fast file system for UNIX.”
ACM Transactions on Computer Systems, 2(3):181–
197, August 1984.

8. Mendel Rosenblum and John Ousterhout. "The LFS
storage manager.” InUSENIX — Summer 1990,
June 1990, Anaheim, CA, pp. 315–324.

9. David Patterson, Garth Gibson and Randy Katz. "A
case for redundant arrays of inexpensive disks
(RAID).” In Proceedings ACM SIGMOD, June
1988, pp. 109--116.

10. Ethan Miller and Randy Katz. “An analysis of file
migration in a Unix supercomputing environment.”
To appear inUSENIX—Winter 1993, January 1993.

11. David Jensen and Daniel Reed. “File archive activ-
ity in a supercomputer environment.” Technical Re-
port UIUCDCS-R-91-1672, University of Illinois at
Urbana-Champaign, April 1991.

