
Optimizing Galois Field Arithmetic for Diverse Processor Architectures and
Applications

Kevin M. Greenan
Univ. of California, Santa Cruz

kmgreen@cs.ucsc.edu

Ethan L. Miller
Univ. of California, Santa Cruz

elm@cs.ucsc.edu

Thomas J. E. Schwarz, S.J.
Santa Clara University
tjschwarz@scu.edu

Abstract

Galois field implementations are central to the design of
many reliable and secure systems, with many systems im-
plementing them in software. The two most common Galois
field operations are addition and multiplication; typically,
multiplication is far more expensive than addition. In soft-
ware, multiplication is generally done with a look-up to a
pre-computed table, limiting the size of the field and result-
ing in uneven performance across architectures and appli-
cations.
In this paper, we first analyze existing table-based im-

plementation and optimization techniques for multiplica-
tion in fields of the form GF(2l). Next, we propose the
use of techniques in composite fields: extensions of GF(2l)
in which multiplications are performed in GF(2l) and ef-
ficiently combined. The composite field technique trades
computation for storage space, which prevents eviction of
look-up tables from the CPU cache and allows for arbi-
trarily large fields. Most Galois field optimizations are spe-
cific to a particular implementation; our technique is gen-
eral and may be applied in any scenario requiring Galois
fields. A detailed performance study across five architec-
tures shows that the relative performance of each approach
varies with architecture, and that CPU, memory limitations
and fields size must be considered when selecting an appro-
priate Galois field implementation. We also find that the
use of our composite field implementation is often faster
and less memory intensive than traditional algorithms for
GF(2l).

1. Introduction
The use of Galois fields of the form GF(2l), called

binary extension fields, is ubiquitous in a variety of ar-
eas ranging from cryptography to storage system reliabil-
ity. These algebraic structures are used to compute erasure
encoded symbols, evaluate and interpolate polynomials in
Shamir’s secret sharing algorithm [22], compute algebraic
signatures over variable-length strings of symbols [21], and

encrypt blocks of data in the current NIST advanced en-
cryption standard [14]. Current memory, CPU cache sizes
and preferred approaches limit most applications to per-
forming computation in either GF(28) or GF(216). The
goal of our research is to study the multiplication perfor-
mance of these common fields, propose an alternate rep-
resentation for arbitrary-sized fields and compare perfor-
mance across all representations on different CPU archi-
tectures and for different workloads.

Multiplication in GF(2l) is usually done using pre-
computed look-up tables, while addition of two elements
in GF(2l) is usually, but not always, carried out using an
inexpensive bitwise-XOR of the elements. As a result, mul-
tiplication has the greatest effect on overall algorithm per-
formance because a table look-up is more expensive than
bit-wise XOR. Due to the restrictions of look-up tables, el-
ements in the implemented field are almost always smaller
than a computer word, while bit-wise XOR operates over
words by definition. In many applications, the multiplica-
tion operation is used just as often as addition; thus, op-
timizing the multiplication operation will, in turn, lead to
much more efficient applications of Galois fields.

The byte-based nature of computer memory motivates
the use of GF(28): each element represents one byte of
storage. This field only has 256 elements, which results
in small multiplication tables; however, use of GF(28), for
example, restricts the size of a Reed-Solomon codeword to
no more than 257 elements [13]. The smallest feasible field
larger than GF(28) is GF(216). Growing to GF(216) and
beyond has a significant impact on multiplication and other
field operations. A complete lookup table for multiplica-
tion in GF(216) requires 8GB—well beyond the memory
capacity of most systems. The standard alternative to a full
multiplication table is a logarithm and an antilogarithm ta-
ble requiring 256KB of memory, which may fit in the stan-
dard L2 cache but will likely be only partially resident in an
L1 cache. Using a straightforward table-based multiplica-
tion approaches to match word size in a 32-bit system (e.g.
GF(232)) is impossible, given modern memory sizes.

This paper will be published in the Proceedings of the 16th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS 2008), Baltimore, MD, September 2008.

Composite fields are an alternative to traditional table-
based methods. Using this technique, elements of a field
GF(2n) are represented in terms of elements in a sub-field
GF(2l), where n= l× k. The composite field GF((2l)k) is
a representation of a k-degree extension of GF(2l), where
GF(2l) is called the ground field. This technique trades ad-
ditional computation for a significant decrease in storage
space relative to traditional table-based methods. Since the
cost of a cache miss is comparable to that of the execu-
tion of many instructions, trading additional computation
for lower storage requirements can significantly increase
performance on modern processors. Additionally, many
applications will use Galois fields for different purposes;
using the composite field technique, it may be possible to
reuse the the ground Galois field tables for several variable-
sized Galois field extensions.
The performance of the Galois field implementation is a

critical factor in overall system performance. The results
presented here show dramatic differences in throughput,
but there is no overall algorithmic winner on the various
platforms we studied. We conclude that a performance-
optimizing software suite needs to tune the Galois field
implementations to architecture, CPU speed and cache
size. In this paper, we restrict our investigation to the ef-
ficient implementation of operations in GF(24), GF(28),
GF(216), and GF(232), postponing an evaluation of imple-
mentations for larger size fields for future work.
The contributions of this paper are threefold. First,

we present and compare popular table-based binary exten-
sion field implementation techniques and some optimiza-
tions. Next, we propose the use of software-based compos-
ite fields when implementing GF(216) and GF(232). Fi-
nally, we show that the performance of different implemen-
tations of Galois fields is highly dependent on underlying
hardware and workload, and suggest techniques better opti-
mized for distinct architectures. Unlike many hardware and
software Galois field optimizations, all of the techniques
described are general and may be applied to any applica-
tion requiring Galois field arithmetic.

2. Applications of Galois Fields
The use of erasure codes in disk arrays, distributed stor-

age systems and content distribution systems has been a
common area of research within the systems community
over the past few years. Most work is concerned with fault
tolerant properties of codes, performance implications of
codes, or both. Many of the erasure codes used in stor-
age systems are XOR-based and generally provide limited
levels of fault tolerance; a flood of special-purpose, XOR-
based codes is the result of a performance-oriented push
from the systems community [5, 3, 24]. While these codes
perform all encoding and decoding using the XOR opera-
tor, they either lack flexibility in the number of tolerated

failures or are not maximum distance separable (MDS) and
may require additional program complexity.

Linear erasure codes, such as Reed-Solomon [17], are
MDS. As a result, Reed-Solomon codes provide flexibility
and optimal storage efficiency. A Reed-Solomon codeword
is computed by generating m parity symbols from k data
symbols such that any m erased symbols may be recov-
ered. Each parity symbol is generated using k Galois field
multiplications and k− 1 additions. The required size of
the underlying Galois field is bound by the number of par-
ity and data symbols in a codeword. Linear erasure codes
are also used in network coding to maximize information
flow in a network, where linear combinations of symbols
are computed (mixed) at intermediate nodes within a net-
work [1]. The field size is typically bound by network size
and connectivity.

Threshold cryptography algorithms, such as Shamir’s
secret sharing algorithm [22], also rely on Galois fields for
encoding and decoding. The algorithm chooses a random
k-degree polynomial over a Galois field; the zero-th coeffi-
cient is the secret to be shared among n participants. The
polynomial is evaluated over n coordinates (shares), dis-
tributed among the participants. Polynomial interpolation
is used to reconstruct the zero-th coefficient from any k+1
unique shares. The construction, evaluation and interpola-
tion of the polynomial may also be done over Zp for some
prime number p. Unfortunately, when dealing with large
fields, the use of a suitable prime numbermay result in field
elements that are not byte-aligned. Using Galois fields al-
lows all of the field elements to be byte aligned.

Another class of algorithms that use Galois field arith-
metic is algebraic signatures [21]. Algebraic signatures
are Rabinesque because of the similarity between signature
calculation and the hash function used in the Rabin-Karp
string matching algorithm [6]. The algebraic signature of
a string s0,s1, . . . ,sn−1 is the sum ∑n−1i=0 siα

i, where α and
the elements of the string are members of the same Galois
field. Algebraic signatures are typically used across RAID
stripes, where the signature of a parity disk equals the par-
ity of the signatures of the data disks. This property makes
the signatures well-suited for efficient, remote data verifi-
cation and data integrity in distributed storage systems.

While the use of fields larger than GF(28) is gener-
ally considered overkill, there are practical instances where
large fields are required. As long as there are at most
257 symbols in a codeword, Reed-Solomon can be imple-
mented withGF(28). Once the number of symbols exceeds
this bound, a larger field must be used. For example, the
disaster recovery codes described in [9] may require thou-
sands of symbols per codeword; thus, a larger field such as
GF(216) must be used. Algebraic signatures have a similar
restriction. In this case case, the length of the string is lim-

ited by the size of the underlying field and in many cases a
field larger than GF(28) is required.
All of these applications make extensive use of Galois

field multiplication, which is generally second to disk ac-
cess as a performance bottleneck in a storage system that
uses Galois fields. However, as storage systems begin to
use non-volatile memories [8], Galois field performance
may begin to dominate storage and retrieval time. We de-
scribe methods aimed at improving general multiplication
performance in the next two sections.

3. Construction of GF(2l)
The field GF(2l) is defined by a set of 2l unique ele-

ments that is closed under both addition and multiplication,
in which every non-zero element has a multiplicative in-
verse and every element has an additive inverse. As with
any field, addition and multiplication are associative, dis-
tributive and commutative [12]. The Galois field GF(2l)
may be represented by the set of all polynomials of de-
gree at most l− 1, with coefficients from the binary field
GF(2)—the field defined over the set of elements 0 and 1.
Thus, the 4-bit field element a = 0111 has the polynomial
representation a(x) = x2+ x+1.
In contrast to finite fields defined over an integer prime,

the field GF(2l) is defined over an irreducible polynomial
of degree l with coefficients inGF(2). An irreducible poly-
nomial is analogous to a prime number in that it cannot
be factored into two non-trivial factors. Addition and sub-
traction in GF(2) is done with the bitwise XOR operator,
and multiplication is the bitwise AND operator. It follows
that addition and subtraction in GF(2l) are also carried out
using the bitwise XOR operator; however, multiplication
is more complicated. In order to multiply two elements
a,b ∈ GF(2l), we perform polynomial multiplication of
a(x) · b(x) and reduce the product modulo an l-degree ir-
reducible polynomial over GF(2). Division among field
elements is computed in a similar fashion using polynomial
division. The order of a non-zero field element α, ord(α),
is the smallest positive i such that αi = 1. If the order of
an element α ∈ GF(2l) is 2l − 1, then α is primitive. In
this case, α generates GF(2l), i. e., all non-zero elements
of GF(2l) are powers of α.
This section describes several approaches to perform-

ing multiplication over the fields GF(24), GF(28), and
GF(216) and presents several optimizations. All of the
methods described here may be used to perform ground
field calculations in the composite field representation.

3.1. Multiplication in GF(2l)

Courses in algebra often define Galois fields as a set
of polynomials over a prime field such as {0,1} modulo
a generator polynomial. While it is possible to calculate
in Galois fields performing polynomial multiplication and

Input : a,b ∈ GF(2l) and FLD SIZE= 2l
if a is 0 OR b is 0 then
return 0

end if
sum← log[a]+ log[b]
if sum≥ FLD SIZE−1 then
sum← sum−FLD SIZE−1

end if
return antilog[sum]

Figure 1: Computing the product of a and b using log and antilog
tables

reduction modulo the generator polynomial, doing so is
rarely efficient. Instead, we can make extensive use of pre-
computed lookup tables. For small Galois fields, it is pos-
sible to calculate all possible products between the field el-
ements and store the result in a (full) look-up table. How-
ever, this method consumes large amounts of memory—
O(n2) for fields of size n.
Log/antilog tables make up for storage inefficiency by

requiring some computation and extra lookups in addition
to the single lookup required for a multiplication table. The
method requiresO(n) space for fields of size n and is based
on the existence of a primitive element α. Every non-zero
field element β ∈ GF(2l) is a power β= αi where the log-
arithm is uniquely determined modulo 2l − 1. We write
i = log(β) and β = antilog(i). As shown in Figure 1, the
product of two non-zero elements a,b ∈ GF(2l) can be
computed as a ·b= antilog(log(a)+ log(b)) mod 2l−1.

3.2. Optimization of the Full Multiplication Table

The size of the full multiplication table is reduced by
breaking a multiplier in GF(2l) into a left and a right part.
The result of multiplication by a left and by a right part
is stored in two tables, resulting in a significantly smaller
multiplication table. Multiplication is performed using a
lookup into both tables and an addition to calculate the
correct product. Other papers have called this optimization
a “double table” [21]; we call it a left-right table. To
define it formally, we represent the elements of GF(2l) as
polynomials of degree up to l− 1 over {0,1}. If we wish
to multiply field elements a(x) = a1+a2x+ · · ·+al−1xl−1
and b(x) = b1+b2x+ · · ·+bl−1xl−1 in GF(2l), the product
a(x) · b(x) can be arranged into two products and a sum

(a1+ · · ·+al−1xl−1) · (b1+ · · ·+bl−1xl−1)
= ((a1+ · · ·+a l

2−1
x
l
2−1) · (b1+ · · ·+bl−1xl−1))

+ ((a l
2
x
l
2 + · · ·+al−1xl−1) · (b1+ · · ·+bl−1xl−1)).

By breaking the result into two separate products, we
can construct two tables having 2l/2 · 2l entries each,
assuming l is even. This approach, which computes
the product of two elements using two lookups, a bit-

Input : FLD SIZE== 2l
for i= 0 to FLD SIZE& l

2 do
for j = 0 to FLD SIZE do
mult tbl left[i][j] ← gf mult(i' l

2 , j)
mult tbl right[i][j] ← gf mult(i, j)

end for
end for

Figure 2: Precomputing products for the left and right multipli-
cation tables

wise shift, two bitwise ANDs and a bitwise XOR,
requires that tables be generated as shown in Fig-
ure 2. The product a · b, a,b ∈ GF(2l) is the sum of
mult tbl le f t[a1 >> l/2][b] and mult tbl right[a0][b],
where a1 are the l

2 most significant bits and a0 are the
l
2

least significant bits.
This multiplication table optimization is highly effective

forGF(28) and GF(216). The standard multiplication table
for GF(28) requires 64KB, which typically fits in the L2
cache, but might not fit in the data section of an L1 cache.
Using the multiplication table optimization, the table for
GF(28) is 8KB, and is much more likely to be fully resi-
dent in the L1 cache. The table for GF(216) occupies 8GB
and will not fit in main memory in a majority of systems;
however, the optimization shrinks the table from 8GB to
66MB, which has a much better chance of fitting into main
memory.

3.3. Optimization of the Log/Antilog Method

While our previous optimization traded an additional
calculation for space savings, the optimizations for the
log/antilog method go in the opposite direction. As shown
in Figure 1, the standard log/antilog multiplication algo-
rithm requires two checks for zero, three table-lookups and
an addition modulo 2l − 1. We can divide two numbers
by taking the antilogarithm of the difference between the
two logarithms, but this difference has to be taken modulo
2l − 1 as well. We can avoid the cumbersome reduction
modulo 2l−1 by observing that the logarithm is defined to
be a number between 0 and 2l−2, so the sum of two loga-
rithms can be at most 2 ·2l−4 and the difference between
two logarithms is larger or equal to −2l + 1. By extend-
ing our antilogarithm table to indices between−2l +1 and
2l − 2, our log/antilog multiplication implementation has
replaced the addition/subtraction modulo 2l−1 with a nor-
mal signed integer addition/subtraction.
If division is a rare operation, we can use an insight by

A. Broder [personal communication from Mark Manasse]
to speed up multiplication by avoiding the check for the
factors being zero. Although the logarithm of zero is un-
defined, if the logarithm of zero is defined to be a negative
number small enough that any addition with a true loga-
rithm still yields a negative number, no explicit zero check
is needed. Thus, we set log(0) = −2l and then define the

Technique Space Complexity
Mult. Table 2l ·2l 1 LOOK
Log/Antilog 2l +2l 3 LOOK, 2 BR, 1 MOD

1 ADD
Log/Antilog Optimized 5 ·2l 3 LOOK, 1 ADD

Huang and Xu 2l +2l 3 LOOK, 1 BR, 3 ADD
1 SHIFT, 1 AND

LR Mult. Table 2(3l/2)+1 2 LOOK, 2 AND
1 XOR, 1 SHIFT

Table 1: Ground field memory requirements and computation
complexity of multiplication in GF(2l). The operations are ab-
breviated LOOK for table lookup, BR for branch and MOD for
modulus; the rest refer to addition and the corresponding bitwise
operations.

antilog of a negative number to be 0. As a result of this
redefinition, the antilog table now has to accommodate in-
dices between −2l+1 and 2l+1− 2 and has quintupled in
size, but the product of a and bmay now be calculated sim-
ply as a ·b= antilog[log[a]+ log[b]]. We call this approach
the optimized logarithm/antilogarithm or Broder’s scheme.
Huang and Xu proposed three improvements to the

log/antilog approach [11]. The improvements were com-
pared to the full multiplication table and the unoptimized
logarithm/antilogarithm approaches in GF(28). The first
two improvements optimize the modular reduction opera-
tion out and maintain the conditional check for zero, while
the third improvement is Broder’s scheme. The first im-
provement replaces the modulus operator by computing the
product of two non-zero field elements as

antilog[(log[a]+ log[b])&(2n−1)+(log[a]+ log[b])& n].

Due to the similarity between the second and third im-
provements in Huang and Xu [11] and Broder’s scheme, we
chose to only include the first improvement (called Huang
and Xu) for comparison in our study.
This section has described a variety of techniques and

optimizations for multiplication inGF(2l); Table 1 lists the
space and computation requirements for each approach. In
the next section, we show that the multiplication techniques
in GF(2l) can be used to efficiently compute products over
the field GF((2l)k).

4. Using Composite Fields
Many hardware implementations of Galois fields use

specialized composite field techniques [15, 16], in which
multiplication in a large Galois field is implemented in
terms of a smaller Galois field. While only using fields
with sizes that are a power of 2, we want to implement
multiplication and division in GF(2n) in terms of GF(2l),
where n = l · k. Galois field theory states that GF(2n) is
isomorphic to an extension field ofGF(2l) generated by an
irreducible polynomial f (x), of degree k with coefficients
in GF(2l).

In this implementation, elements of GF(2n), written
GF((2l)k), are polynomials of degree up to k− 1 with co-
efficients in GF(2l). In our standard representation, each
element of GF((2l)k) is a bit string of length n, which
we now break into k consecutive strings of length l each.
For example, if n = 32 and k = 4, a bit string of length
32 is broken into four pieces of length 8. If the result is
(a3,a2,a1,a0), we identify the GF(232) element with the
polynomial a3 · x3 + a2 · x2 + a1 · x+ a0, with coefficients
a3,a2,a1,a0 ∈GF(28). This particular representation is de-
noted GF((28)4).
The product of two GF((2l)k) elements is obtained by

multiplying the corresponding polynomials ak−1 · xk−1 +
. . .+a2 · x2+a1 · x+a0 and bk−1 · xk−1+ . . .+b2 · x2+b1 ·
x+b0 and reducing the result modulo the irreducible, defin-
ing polynomial f (x). Their product is

2(k−1)

∑
i=0

(

∑
ν+µ=i

aν ·bµ

)

xi

For i > k − 1 in this expression, we replace xi with xi
mod f (x), perform the multiplication, and reorganize by
powers of xi. The result is the product in terms of prod-
ucts of the coefficients of the two factor polynomials multi-
plied with coefficients of the defining polynomial f (x). In
order to do this efficiently, we must search for irreducible
polynomials f (x) of degree k over GF(2l) that have many
coefficients equal to zero or to one.
For small field sizes, it is possible to exhaustively search

for irreducible polynomials. If k ≤ 3, an irreducible poly-
nomial is one that has no root (i. e., α such that f (α) = 0)
and irreducibility testing is simple. Otherwise, the Ben-Or
algorithm [7] is an efficient way to find irreducible polyno-
mials.
We have implemented multiplication in GF((2l)2), for

l ∈ {4,8,16} and GF((2l)4), for l ∈ {4,8} using the com-
posite field representation, as described in the remainder
of this section We have developed a similar approach for
computing the inverse of an element. The composite field
inversion techniques and their performance are discussed
in the full version of this paper [10].

4.1. Multiplication in GF((2l)2)
In general, irreducible polynomials over GF(2n) of de-

gree two must have a linear coefficient. We have found ir-
reducible polynomials of the form f (x) = x2+ s ·x+1 over
GF(24), GF(28), and GF(216) that are well-suited for our
purpose. We write any element of GF((2l)2) as a linear or
constant polynomial over GF(2l). Multiplying a1 · x+ a0
by b1 · x+b0 gives the product

(a1 · x+a0) · (b1 · x+b0)
= a1b1x2+(a1b0+a0b1)x+a0b0.

Since x2 = sx+1 mod f (x), this becomes

(a1b0+a0b1+ sa1b1)x+(a1b1+a0b0).

As described above, multiplication in GF((2l)2) is done
in terms of five multiplications in GF(2l), of which one
is done with a constant element s. If we define GF(28)
through the binary polynomial x8 + x4 + x3 + x2 + 1, or
0x11D in hexadecimal notation, we can choose s to be
0x3F, resulting in an irreducible polynomial that is opti-
mal in the number of resulting multiplications. An irre-
ducible, quadratic polynomialmust have three non-zero co-
efficients since, without a constant coefficient the polyno-
mial has root zero and a polynomial of form x2+a always
has the square root of a as a root. Since x2 + x+ 1 is not
irreducible overGF(24), GF(28) orGF(216), we can do no
better than x2+ s · x+1. The fields GF((24)2), GF((28)2)
and GF((216)2) were implemented in this manner.

4.2. Multiplication in GF((2l)4)
We can use the composite field technique in two ways

to implement GF((2l)4). First, we can implement GF(28)
and GF(216) as GF((24)2) and GF((28)2), respectively,
and then implement GF(232) as GF(((28)2)2). This ap-
proach would require that we find an irreducible polyno-
mial over GF((28)2); fortunately, there is one of the same
form as in the previous section. Mutatis mutandis, our mul-
tiplication formula remains valid and we have implemented
multiplication in GF(232) using 5 · 5 = 25 multiplications
in GF(28). The same approach applies to multiplication in
GF(216) over coefficients in GF((24)2).
We can also use a single step to implement GF(232)

in terms of GF(28), but finding an appropriate irreducible
polynomial of degree 4 in GF(28) is more involved. Af-
ter exhaustive searching, we determined that we can do no
better than x4+ x2+ sx+ t (s,t)∈ {0,1}), for which the re-
sulting implementation uses only 22 multiplications, 16 of
which result from multiplying all coefficients with each
other and the remaining 6 frommultiplying s and t by a3b3,
a3b2+a2b3, and by a3b1+a2b2+a1b3, reusing some of the
results. For instance, we have an addend of a3b3(t+ 1)x2
and of a3b3t, but we can calculate both of them with a sin-
gle multiplication by t. Again, the same formula works for
the GF((24)4) representation of GF(216).

5. Experimental Evaluation
We have written a Galois field library that imple-

mentsGF(24), GF(28),GF(216) andGF(232) using the ap-
proaches presented in Sections 3 and 4. The core library
contains code for finding irreducible polynomials, polyno-
mial operations, and the arithmetic operations over the sup-
ported fields. Instances of Shamir’s secret sharing, Reed-
Solomon and algebraic signatures were also created on top

Processor L1(data)/L2 Memory
2.4GHz AMD Opteron 64KB/1MB 1GB
1.33GHz PowerPC G4 32KB/512KB 768MB
2GHz Intel Core Duo 32KB/2MB1 2GB
2GHz Intel Pentium 4 M 8KB/512KB 1GB

400 MHz ARM9 32KB/— 128MB
Table 2: List of the processors used in our evaluation.

of the library. The entire implementation was written in C
and contains roughly 3,000 lines of code. This code will be
made available prior to publication as a library that imple-
ments Galois fields and the aforementioned applications.
Our experimental evaluation measures the speed of mul-

tiplications as well as the throughput of three “higher-level”
applications of Galois fields: Shamir secret sharing, Reed
Solomon encoding and algebraic signatures. We took our
measurements on five machines, whose specifications are
listed in Table 2. The remainder of this section focuses on
8 key observations found when studying the effect of Ga-
lois field implementation on performance. Due to space,
we only present a subset of the results in this section. For
more detailed performance numbers, please refer to [10].
5.1. Performance using GF(2l)
Figures 3(a)–3(d) compare multiplication throughput

using the table-based techniques discussed in Section 3
over the fields GF(24), GF(28) and GF(216). These tech-
niques are the full multiplication table (tbl), left-right table,
(lr tbl), optimized logarithm/ antilogarithm method (lg),
the optimization chosen from [11] (huang lg), and the un-
optimized version of logarithm/antilogarithm (lg orig).
Three distinct workloads were run on four of the archi-

tectures. Although they are artificial, the workloads em-
body typical operations in Galois fields. The UNIFORM

workload represents the average-case by computing the
product of a randomly-chosen field element (drawn from
an array) and a monotonically-increasing value masked to
fit the value of a field element. The CONSTANT workload
computes the product of a constant value and a randomly
chosen field element. The SQUARE workload squares a ran-
domly chosen element, then squares the result and so forth.
We expected the UNIFORM workload to essentially use the
entire look-up table, while CONSTANT and SQUARE typically
utilize only a subset of a table.
Observation #1 : Workload determines look-up table

access pattern, which affects performance.

As expected, the UNIFORM data set has lower throughput
than the other workloads, for two reasons. First, UNIFORM
draws random values from an array, competing with the
look-up tables for space in the cache. Second, the uniform
workload computes the product of two distinct elements at

1Each core has a private 32KB L1 cache. The L2 cache is shared
between the cores.

each step, which has a dramatic effect when caching large
tables. Unlike UNIFORM , the CONSTANT and SQUARE work-
loads only access a subset of the tables, which results in
reduced cache competition and higher throughput. Our re-
sults show that onemust be attentivewhenmeasuring table-
based multiplication performance, since look-up table ac-
cess patterns have a dramatic effect on performance.
Observation #2 : Cache size affects performance.

In addition to cache competition, the actual size of the
look-up table relative to cache size also greatly affects per-
formance. For example, the full multiplication table for
GF(28) generally performs worse than any other algorithm
for the average-case workload, since a full multiplication
table requires at least 64KB, and thus does not fit in the L1
cache of most processors.
Observation #3 : Performance decreases as the cache-

resident portion of the table decreases.

SQUARE and CONSTANT perform much better than UNI-
FORMwhen the table size is quite large, since a smaller frac-
tion of the multiplication table is required in cache. When
the table size is relatively small, the performance of SQUARE
and CONSTANT is closer to UNIFORM , since a larger frac-
tion of the multiplication table will be kept in cache. In
addition, any extra computation is overshadowed by cache-
related issues in the UNIFORM workload; extra computation
in addition to table look-ups has little effect on average-
case performance.
Overall, we found that the left-right implementation of

GF(28) appears to have the best performance for the UNI-
FORM workload across three of the four architectures. This
optimization appears to provide the best combination of ta-
ble size and computation for these architectures. We be-
lieve that the optimized logarithm/antilogarithm approach
for GF(28) performs best on ARM due to the computa-
tional constraints on that processor and the lack of an L2
cache.

5.2. Performance using GF((2l)k)

Figure 5 shows the normalized multiplication through-
put (in MB/s) of the composite field technique and
the traditional look-up table techniques for GF(216) and
GF(232) over the UNIFORM workload. In general, the loga-
rithm/antilogarithm approaches performed the best across
both composite field and traditional look-up table tech-
niques, thus we omit the other approaches.
Figures 4(b)–4(d) show the multiplication performance

in three typical applications: Reed-Solomon encoding,
Shamir secret sharing and algebraic signature computation.
We present the results for Reed-Solomon encoding with 62
data elements and 2 parity elements in two scenarios. The
first reflects basic codeword encoding, in which each sym-
bol in the codeword is an element of the appropriate Galois

2
to

4
.lg

2
to

8
.lg

2
to

1
6

.lg

2
to

4
.t

b
l

2
to

8
.t

b
l

2
to

4
.lr

_
tb

l

2
to

8
.lr

_
tb

l

2
to

1
6

.lr
_

tb
l

2
to

4
.lg

_
o

ri
g

2
to

8
.lg

_
o

ri
g

2
to

1
6

.lg
_

o
ri
g

2
to

4
.lg

_
h

u
a

n
g

2
to

8
.lg

_
h

u
a

n
g

2
to

1
6

.lg
_

h
u

a
n

g

T
h

ro
u

g
h

p
u

t
M

B
/s

0

100

200

300

400

500

600

700
uniform

square

constant

(a) AMD

2
to

4
.lg

2
to

8
.lg

2
to

1
6
.lg

2
to

4
.t
b
l

2
to

8
.t
b
l

2
to

4
.lr

_
tb

l

2
to

8
.lr

_
tb

l

2
to

1
6
.lr

_
tb

l

2
to

4
.lg

_
o
ri
g

2
to

8
.lg

_
o
ri
g

2
to

1
6
.lg

_
o
ri
g

2
to

4
.lg

_
h
u
a
n
g

2
to

8
.lg

_
h
u
a
n
g

2
to

1
6
.lg

_
h
u
a
n
g

T
h
ro

u
g
h
p
u
t
M

B
/s

0

50

100

150

200

250

300

350
uniform

square

constant

(b) PPC

2
to

4
.lg

2
to

8
.lg

2
to

1
6

.lg

2
to

4
.t

b
l

2
to

8
.t

b
l

2
to

4
.lr

_
tb

l

2
to

8
.lr

_
tb

l

2
to

1
6

.lr
_

tb
l

2
to

4
.lg

_
o

ri
g

2
to

8
.lg

_
o

ri
g

2
to

1
6

.lg
_

o
ri
g

2
to

4
.lg

_
h

u
a

n
g

2
to

8
.lg

_
h

u
a

n
g

2
to

1
6

.lg
_

h
u

a
n

g

T
h
ro

u
g
h
p
u
t
M

B
/s

0

100

200

300

400

500

600

700

800
uniform

square

constant

(c) IntelDuo

2
to

4
.lg

2
to

8
.lg

2
to

1
6
.lg

2
to

4
.t
b
l

2
to

8
.t
b
l

2
to

4
.lr

_
tb

l

2
to

8
.lr

_
tb

l

2
to

1
6
.lr

_
tb

l

2
to

4
.lg

_
o
ri
g

2
to

8
.lg

_
o
ri
g

2
to

1
6
.lg

_
o
ri
g

2
to

4
.lg

_
h
u
a
n
g

2
to

8
.lg

_
h
u
a
n
g

2
to

1
6
.lg

_
h
u
a
n
g

T
h

ro
u

g
h

p
u

t
M

B
/s

0

10

20

30

40

50
uniform

square

constant

(d) ARM
Figure 3: Throughput of ground fields using multiplication tables, lg/anilg tables and LR tables. The labels on the x-axis are given as
field.multmethod, where field is the underlying field and multmethod is the multiplication algorithm.

field. The secondmethod, called regionmultiplication, per-
forms codeword encoding over 16K symbols, resulting in
16K consecutive multiplications by the same field element.
We also perform a (3,2) Shamir secret split, which evalu-
ates a random 2-degree polynomial over each field for the
values 1, 2 and 3. In algebraic signatures, the signature is
computed by {sigα0(D), sigα(D)} and sigβ(D) =∑li=0 diβi
and |D|= l over 4K symbol blocks. Both Shamir and alge-
braic signatures use Horner’s scheme for polynomial eval-
uation [6], so most of the multiplications are reminiscent of
CONSTANT .

We explored an interesting optimization specific to the
composite field representation when computing algebraic
signatures. In addition to using the multiplication table
technique shown in [21], we hand-picked α for the com-
posite field implementations. For instance, if we choose
α = 0x0101 ∈ GF((28)2), then multiplication by α re-
sults in two multiplications by 1 in GF(28), which can be
optimized out as two copy operations. Note that α is cho-
sen such that ord(α) & b, where b is the size of the data
blocks. This optimization could also be applied to a Reed-
Solomon and Shamir implementation; for brevity, we omit
the optimizations.

Figure 5: Normalized throughput of the traditional look-up algo-
rithms and the composite field method. All values are normalized
to lg-GF((28)2). The actual lg-GF((28)2) throughput numbers
(MB/s) are shown on the x-axis along with architecture.

We ran all of the techniques (traditional look-up and
composite field representations) for each application. We
report the “best” performer for each application and field.
Observation #4 : The composite field representation

is quite effective and in some cases outperforms the
traditional look-up table techniques.

(a) Shamir (b) Reed-Solomon

(c) Reed-Solomon (Region) (d) Algebraic Sigs.
Figure 4: Normalized throughput of various applications. All values are normalized to GF(28). The actual throughput numbers (MB/s)
are shown on the x-axis along with architecture. All of the reported numbers are given for the best performing technique for the particular
application.

Figure 5 compares the normalized throughput of UNI-
FORM multiplications in GF(216) and GF(232), where the
ground field operations are computed using the unopti-
mized and optimized logarithm/antilogarithm approaches.
We observed very good results when using GF(28) as a
ground field in the GF(216) and GF(232) composite field
implementations. In fact, the GF((28)2) implementation
either outperforms or performs comparably to GF(216) on
all architectures, showing the effect table size and cache
size can have on overall multiplication performance. The
effect of cache size is very apparent when comparing Intel-
Duo and AMD to the other, relatively cache-constrained,
architectures. We notice a striking performance improve-
ment when implementing GF(216) as GF((28)2) in the ar-
chitectures with smaller L1 and L2 caches. This improve-
ment is largest on the IntelM processor, which only has an
8KB L1 cache.

Observation #5 : Raw multiplication performance does
not always reflect application performance.

We report the best performingmultiplication method for
each application in Figure 4. While not shown in Figure 4,
the raw multiplication performance does not always reflect
the performance across the applications. For instance, as

shown in Figure 3, the left-right table results in the high-
est UNIFORM multiplication throughput for GF(28). This is
not necessarily the case for applications implemented using
GF(28) in Figure 4.
Overall, performance varies greatly between implemen-

tations and architecture. Interactions within the applica-
tions is much more complicated than the raw multiplication
experiments; thus, the application must also be considered
when choosing an appropriate Galois field representation.
For example, the applications in Figure 4 perform multi-
plication on sizeable data buffers, leading to more frequent
cache eviction of the multiplication tables.
Observation #6 : Composite field implementation is

affected by cache size.

Cache effects are apparent in Figure 4. Due to the rel-
atively small L1 and L2 caches in the PowerPC, IntelM
and ARM, the fields implemented over GF(28) generally
outperform the GF(216) implementations in both Reed-
Solomon encoding algorithms. The multiplication work-
load of algebraic signatures and Shamir’s secret sharing al-
gorithm is similar to CONSTANT , thus computation becomes
a limiting factor.
Observation #7 : No technique is best for every

architecture and application.

There exists no clear winner for GF(216) or GF(232)
across architectures or techniques. However, it is impor-
tant to note that performance degrades quickly as the size
of the extension field grows from 2 to 4 degrees because of
the exponential increase in the number of multiplications
and the choice of irreducible polynomial. While there is
variance in the performance across architecture and appli-
cation, the optimized logarithm/antilogarithm scheme and
the full multiplication table technique for GF(28) seem to
perform very well in most cases.
Observation #8 : Application-specific optimizations

for composite fields can further improve performance.

As shown in Figure 4(d), hand-picking field ele-
ments when computing algebraic signatures in a compos-
ite field can further improve performance. As an ex-
ample, we find that the GF((216)2) implementation with
α = 0x00010001 outperforms all others. Given a large
ground field (i. e., GF(216) or larger), where the elements
are expected to have higher order, we should be able to
perform a similar optimization for a Reed-Solomon imple-
mentation.

5.3. Discussion

While we cannot state a sweeping conclusion based on
our results, there are a few interesting points worth men-
tioning when considering composite fields. First, one main
advantage of using composite fields is the ability to opti-
mize for an application based on the field representation.
We have given an example of how this is done for algebraic
signatures, noting that similar optimizations are possible
for Reed-Solomon and Shamir’s secret sharing algorithm.
Second, the composite field representation has utility even
when the application only requires GF(28). As we have
shown in our analysis, there exist cases where GF((28)2)
outperforms GF(28). This is quite evident when using
the AMD processor, which has the fastest clock speed and
largest L1 cache. Finally, if an implementation requires a
field larger thanGF(28), the composite field representation
may lead to better performance. In many cases, GF((28)2)
tends to outperform GF(216) and GF((216)2) is expected
to outperform many software-based GF(232) implementa-
tions.

6. Related Work
Plank has recently released a fast Galois field li-

brary [18], tailored for arithmetic in GF(28), GF(216) and
GF(232). Multiplication in GF(28) and GF(216) is imple-
mented using the full multiplication table and a log/antilog
approach that maintains the check for zero, but optimizes
the modulus operation out. Multiplication in GF(232) is
implemented as either the field-element-to-bit-matrix ap-

proach [19] or a split-multiplication that uses seven full
multiplication tables for multiplication of two 32-bit words.
Our composite field approach forGF(216) and GF(232) re-
quires less space, since we only require a single multipli-
cation table. In addition, any ground field multiplication
technique may be used in the the composite field represen-
tation.
A great deal of effort has gone into alternative Galois

field representations for Reed-Solomon codes. One popu-
lar optimization uses the bit-matrix representation, and is
used in Reed-Solomon erasure coding [19, 4], where each
multiplication over the field GF(2l) is transformed into a
product of an l× l bit matrix and an l× 1 bit vector. This
scheme has the advantage of computing all codewords us-
ing nothing more than word-sized XORs, by trading a mul-
tiplication for at least l XOR operations. The bit-matrix
representation is typically stored as a look-up. For Reed-
Solomon, k×m matrices must be stored for a code that
computes m parity elements from k data elements, where
k×m is generally less than 256. This optimization works
well for many Reed-Solomon implementations, but it may
be difficult or impossible to map the optimization to other
applications. Additionally, the bit-matrix scheme may not
work well in cases where all field elements are represented
or there is relatively little data to encode.
Huang and Xu presented three optimizations for the log-

arithm/antilogarithmapproach inGF(28) [11]. The authors
show improvements to the default logarithm/antilogarithm
multiplication technique that result in a 67% improvement
in execution time for multiplication and a 3× encoding im-
provement for Reed-Solomon. In contrast, our study evalu-
ates a wide range of fields and techniques that may be used
for multiplication in a variety of applications.
The emergence of elliptic curve cryptography has mo-

tivated the need for efficient field operations in extension
fields [23, 2, 20]. The security of this encryption scheme
is dependent on the size of the field; thus the implemen-
tations focus on large fields (i. e., of size 2160). DeWin,
et al. [23] and Savas, et al. [20] focus on GF((2l)k), where
gcd(l,k) = 1. Baily and Paar [2] propose a scheme, called
an Optimal Extension Field, where the field polynomial is
an irreducible binomial and field has prime characteristic
other than 2, leading to elements that may not be byte-
aligned. In other work, Paar, et al. describe hardware-
based composite field arithmetic [15, 16].

7. Conclusions
We have presented and evaluated a variety of ways to

perform arithmetic operations in Galois fields, comparing
multiplication, and application performance on five distinct
architectures and six workloads: three artificial workloads
and three actual Galois field-based coding applications. We
found that the composite field representation requires less

memory and, in many cases, leads to higher throughput
than a binary extension field of the same size. Perfor-
mance for both raw multiplications and applications shows
that both CPU speed and cache size have a dramatic ef-
fect on performance, potentially leading to high variation in
throughput across architectures, especially for larger fields
such as GF(216) and GF(232). Additionally, our results
show that schemes performing well in isolation (i. e., mea-
suring multiplication throughput) may not perform as well
when used in an application or to perform ground compu-
tation in a composite field.
The choice of Galois field calculation method for a par-

ticular application resulted in differences as high as a factor
of three for different approaches on the same architecture;
moreover, no single approach worked best for any given
architecture across applications. Using the approaches and
evaluation techniques we have described, implementers of
systems that use Galois fields for erasure code generation,
secret sharing, algebraic signatures, or other techniques can
increase overall system performance by selecting the best
approach based on the characteristics of the hardware on
which the system will run and the application-generated
Galois field arithmetic workload.

References
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Net-

work information flow. IEEE Transactions on Information
Theory, 46(4):1204–1216, Jul 2000.

[2] D. V. Bailey and C. Paar. Optimal extension fields for fast
arithmetic in public-key algorithms. Lecture Notes in Com-
puter Science, 1462, 1998.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVEN-
ODD: An efficient scheme for tolerating double disk failures
in RAID architectures. IEEE Transactions on Computers,
44(2):192–202, 1995.

[4] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby,
and D. Zuckerman. An XOR-based erasure-resilient coding
scheme. Technical report, ICSI, UC-Berkeley, 1995.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-diagonal parity for double
disk failure correction. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST), pages
1–14, 2004.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. MIT Press,
Cambridge, Massachusetts, 2001.

[7] S. Gao and D. Panario. Tests and constructions of irre-
ducible polynomials over finite fields. In Foundations of
Computational Mathematics, 1997.

[8] K. M. Greenan and E. L. Miller. PRIMS: Making NVRAM
suitable for extremely reliable storage. In Proceedings of
the Third Workshop on Hot Topics in System Dependability
(HotDep ’07), June 2007.

[9] K. M. Greenan, E. L. Miller, T. J. E. Schwarz, and D. D.
Long. Disaster recovery codes: increasing reliability with

large-stripe erasure correcting codes. In StorageSS ’07,
pages 31–36, New York, NY, USA, 2007. ACM.

[10] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz, S.J. Anal-
ysis and construction of Galois fields for efficient storage
reliability. Technical report, UC-Santa Cruz, 2007.

[11] C. Huang and L. Xu. Fast software implementation of finite
field operations. Technical report, Washington Univ., 2003.

[12] R. Lidl and H. Niederreiter. Introduction to Finite Fields
and Their Applications. Cambridge Univ. Press, New York,
USA, 1986.

[13] F. J. MacWilliams and N. J. Sloane. The Theory of Error
Correcting Codes. Elsevier Science B.V., 1983.

[14] National Institute of Standards and Technology. FIPS Pub-
lication 197 : Advanced Encryption Standard.

[15] C. Paar. A new architecture for a parallel finite field multi-
plier with low complexity based on composite fields. IEEE
Transactions on Computers, 45, July 1996.

[16] C. Paar, P. Fleischmann, and P. Roelse. Efficient multiplier
architectures for Galois fields GF(24n). IEEE Transactions
on Computers, 47, Feb 1998.

[17] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software—Practice and
Experience (SPE), 27(9):995–1012, Sept. 1997. Correction
in James S. Plank and Ying Ding, Technical Report UT-CS-
03-504, U Tennessee, 2003.

[18] J. S. Plank. Fast Galois field arithmetic library in C/C++,
April 2007.

[19] J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon
codes for fault-tolerant network storage applications. In
IEEE Interantional Symposium on Network Computing and
Applications, 2006.

[20] E. Savas and C. K. Koc. Efficient methods for composite
field arithmetic. Technical report, Oregon St. Univ., 1999.

[21] T. Schwarz, S. J. and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. In Proceedings of the 26th International Confer-
ence on Distributed Computing Systems (ICDCS ’06), Lis-
boa, Portugal, July 2006. IEEE.

[22] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, Nov. 1979.

[23] D. Win, Bosselaers, Vandenberghe, D. Gersem, and Vande-
walle. A fast software implementation for arithmetic opera-
tions in GF(2n). In ASIACRYPT: International Conference
on the Theory and Application of Cryptology, 1996.

[24] L. Xu and J. Bruck. X-code : MDS array codes with opti-
mal encoding. In IEEE Transactions on Information Theory,
1999.

