
Providing High Reliability in a Minimum Redundancy Archival Storage System

Deepavali Bhagwat1 Kristal Pollack1 Darrell D. E. Long1 Thomas Schwarz, S.J. 1,2

Ethan L. Miller1 Jehan-François Pâris3

1Storage Systems Research Center, University of California, Santa Cruz, CA
2Computer Engineering Department, Santa Clara University, Santa Clara, CA

3Department of Computer Science, University of Houston, Houston, TX

Abstract

Inter-file compression techniques store files as sets of ref-
erences to data objects or chunks that can be shared among
many files. While these techniques can achieve much better
compression ratios than conventional intra-file compression
methods such as Lempel-Ziv compression, they also reduce
the reliability of the storage system because the loss of a few
critical chunks can lead to the loss of many files. We show
how to eliminate this problem by choosing for each chunk a
replication level that is a function of the amount of data that
would be lost if that chunk were lost. Experiments using ac-
tual archival data show that our technique can achieve sig-
nificantly higher robustness than a conventional approach
combining data mirroring and intra-file compression while
requiring about half the storage space.

1. Introduction

Archival digital data continues to accumulate at an as-

tounding pace. It will increase ten-fold between 2006 and

2010 to over 27 exabytes in the commercial and government

sectors [16]. As digital data accrues at ever-increasing rates,

organizations also face increasing regulatory pressure to re-

tain data for long periods of times and may be required to

retrieve data occasionally. In this context, maintaining the

availability of archived data becomes part of the due dili-

gence that organizations are expected to exercise.

To reduce the costs incurred for storing such large vol-

umes of archival data, this data is compressed using various

compression techniques. Several companies [7, 8, 11] al-

ready use various forms of compression for their archival

storage solutions. Our project, Deep Store [34], uses both

intra-file and inter-file compression to reduce redundan-

cies. One such inter-file compression technique used by

Deep Store is chunk-based inter-file compression [17]. In

this technique files are split into variable-length chunks and

stored. If any redundant chunks are found, they are stored

as references rather than as duplicates. In many cases, this

method achieves excellent compression ratios [33].

While archival systems require good compression, they

must also ensure that data is preserved over long time pe-

riods. Compression techniques, while they save storage

space, also have the potential to reduce reliability. For ex-

ample, when inter-file compression is used, dependencies

are introduced between files that share the same chunk.

If such a shared chunk is lost, a disproportionately large

amount of data becomes inaccessible because of the loss

of all the files that share this chunk. As a result, some

chunks are much more important than others and need to

be protected at a higher level to maintain good overall re-

liability. In this paper, we consider the effects of inter-file

chunk-based compression on the reliability of the archival

system. Our approach to improving reliability is to add

redundancy strategically by selectively replicating chunks.
We have developed heuristics that weigh the importance of

a chunk and use this weight to prescribe the level of repli-

cation for the chunk. A part of the storage space saved by

compression is thus reinvested in better protecting the im-

portant chunks. As a result, we achieve even better data

reliability than mirrored (degree of mirroring = 2) Lempel-

Ziv (LZ) compressed [35] files, while still using about half

of the storage space of mirrored LZ-compressed files and

with replication/mirroring as the means to introduce redun-

dancies.

We can also improve reliability by using other redun-

dancy introducing techniques such as erasure correcting

codes used in RAID levels 5 and 6, and by introducing dif-

ferent data placement, failure detection and recovery disci-

plines. We do not consider these here mainly because they

offer intricate trade-offs between speed of recovery, ease of

recovery, and computational and storage overhead.

To focus our efforts, our analysis assumes constant de-

vice failure rates, constant repair rates, and independence of

failures. We only investigated replication as a redundancy

strategy and used a simple concept of robustness, in which
we measured the amount of data loss caused by the loss of a

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

small percentage of devices in addition to a standard failure

model with all usually made simplifying assumptions. We

will investigate other redundancy strategies in the future.

2. Deep Store: An Overview

Deep Store [34] is a large-scale archival storage sys-

tem that stores volumes of immutable data efficiently, with

high reliability and accessibility. It incorporates methods

for inter-file and intra-file compression to utilize storage

space very efficiently. Deep Store uses three techniques to

reduce storage demands: content-addressable storage [11],

delta compression [2, 9] and sub-file chunk-based compres-

sion [17]. Other storage systems such as Venti [23], EMC

Centera [11], StorageTek’s Intellistore [28], Nexsan’s SA-

TABeast [18], Avamar’s Axion [4], and Permabit [21] also

use content addressable storage. In content-addressable

storage, a single feature or hash, also called content address
is computed over an entire file and this hash is used to find

identical files already in the archive. Two files with the same

content address are likely to be identical, but the system still

must check for possible collisions. If the files are identical,

the system only stores a reference to the existing file rather

than storing the file again. In delta compression, the sys-

tem first searches for a file similar to the file currently being

stored, and then stores only the differences between the cur-

rent file and the stored file. A pointer to the stored file and

metadata for reconstructing the current file are stored with

the differences.

������ ���	 �
���	�

����� 	��������

����� ���	
�������	

������ ����	������ ����� ��

����	�� ����	��

������� ������

Figure 1. Sliding Window Technique

Our study focuses only on chunk-based compression.

Chunk-based compression or chunking subdivides a file de-
terministically into variable-sized blocks or chunks. This

technique was first used in the Low-bandwidth Network

File System [17]. Chunking is a two step process. First,

a file is divided into chunks in a deterministic fashion. Sec-

ond, the content within every chunk is used to compute its

features. Figure 1 shows a data stream or a file represented

by the long horizontal rectangles and chunk boundaries in-

dicated by short vertical lines. To divide the file into chunks,

starting from the beginning of the file, we examine the its

contents as seen through a fixed sized (overlapping) sliding

window. At every position of the window, a fingerprint or

digital signature of its contents is computed. In practice we

use Rabin fingerprints [24] to calculate the digital signature

of the contents of the sliding window for their computa-

tional efficiency in this scenario. Rabin fingerprinting by

random polynomials computes a hash of a fixed size from a

binary string of arbitrary length. Rabin fingerprinting func-

tions are of a class of randomized functions that exhibit

uniform distribution of results over arbitrary data. In the

scope of our work, we select a random function from a set

of functions, such as, the set of all irreducible polynomials

of a fixed degree. Once selected, the fingerprinting func-

tion is retained to produce deterministic results. When the

fingerprint meets a certain criteria, such as when the value,

modulo some specified integer divisor, is zero; that posi-

tion of the window defines the boundary of the chunk. This

process is repeated until the complete data stream has been

broken into chunks. In the second step we compute a di-

gest or hash function over the contents of the chunk using

Rabin fingerprints. This digest is the content address of the

chunk. This content address can also be computed using

functions such as MD5 [25], SHA-1 [19] or higher SHA

standards [20]. You et al. [33] have evaluated chunking
and delta-compression with respect to their storage space

efficiency and computational complexity. They conclude

that delta-compression and chunking outperform traditional

stream compression methods with respect to storage space

efficiency. Chunking requires two hashing operations per

byte in the input file: one fingerprint calculation of the fixed

size window and one chunk digest calculation. Once the file

is broken into chunks, only the unique chunks are actually

stored. Deep Store identifies a chunk in the same way as

it identifies files: using a content address (a hash or digest

of the content) to determine if a chunk already exists in the

system. After this type of compression, a file consists of a

set of references to chunks and the metadata necessary to

rebuild the file.

3. Effect of Compression on Reliability

Chunk-based interfile compression can be quite effective

for certain types of data. You, et al. [33] have characterized
this data as files that evolve slowly mainly through small

changes, additions, and deletions. One of the data sets for

our experiments consists of 9.8GB of several web sites:

those of the University of California at Santa Cruz, Santa

Clara University, Stanford University, University of Cali-

fornia at Berkeley, BBC, NASDAQ, CERT, CNN, SANS,

SUN, CISCO, and IBM as they developed over time. We

obtained them from the Internet Archive’s Wayback ma-

chine [29]. This data is a representative sample of archival

data, and will greatly profit from chunk-based compres-

sion due to the incremental nature of the changes that

it has gone through. Chunk-based inter-file compression

stores this data using a storage space of 1.74GB for chunks

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0 1 2 3 4 5 6 7

%
 A

va
ila

bi
lit

y

% Device Failures

chunks available
data available

Figure 2. Effect of inter-file dependencies on
robustness

and 280MB for metadata. On the other hand, when each

file was compressed using LZ-compression, the total stor-

age space required was 5.6GB. Clearly, chunk-based com-

pression can use significantly less storage space than LZ-

compression.

To study the effect of chunk-based compression on reli-

ability we conducted a pilot experiment using this data. We

compressed the files using chunk-based compression, and

then mirrored the chunks and stored them evenly across a

set of 179 devices. The devices were then randomly se-
lected to fail independently, resulting in the loss of up to

7% of the total devices. Figure 2 shows the availability as

a function of device failures in two forms. The first form is

the percentage of raw chunks available. The second form is

the percentage of original data that could be reconstructed

from these available chunks. The data robustness is seen

to be significantly lower than the chunk robustness. For

example, when 6% of the devices fail, about 99.5% of all

chunks are still available, but only 96% of all the data is

still available. This increased data loss happens due to inter-

file dependencies formed as common chunks are shared

amongst multiple files. These inter-file dependencies are

shown schematically in Figure 3 where the dependencies

are measured by the number of file references to a chunk.

If a common chunk is no longer available, all the files that

depend on the chunk are lost resulting in a disproportion-

ately large amount of data loss that we see in Figure 2. This

increased data loss illustrates how good compression can

be detrimental to reliability in the event of device failures,

due to inter-file dependencies formed by common chunks

shared between multiple files.

Chunk-based compression achieved excellent compres-

sion ratios by removing redundancies across files. How-

ever, this introduced inter-file dependencies that hampered

Figure 3. Inter-file dependencies

reliability. Since compression saves significant amount of

storage space, some of this savings can be used to regain

reliability. A simple way of doing this is to use a higher de-

gree of replication. However, we have used a more discern-

ing approach to do this — one that decides the replication

level for a chunk depending on its popularity or importance

so that we did not end up defeating our original purpose of

efficient storage space utilization.

4. Storage Strategy

The simple experiment in the previous section showed

that the loss of a small number of chunks can result in a

disproportionately large data loss. To protect against this,

our heuristics replicate certain important or popular chunks

more aggressively than the others. To accomplish this, we

developed some good measures for the importance of a

chunk. This measure of importance, or weight, is used to
determine the number of replicas for each chunk and their

distribution across devices.

4.1. Replicas Based on Chunk Weight

The effects of the loss of a chunk can be measured by

the amount of data lost and by the number of files that are

inaccessible as a result of this loss. Correspondingly, we

measure the importance of a chunk either by the number

of files that depend on it (the reference count), or by the

amount of data (the byte count) that depends on it. This ap-

proach defines the weight of a chunk as either the reference

count or as the byte count that depend on it, and determines

the number of replicas for each chunk using a logarithmic

function of the chunk’s weight.

The following calculation justifies our intuition to use a

log-based function to calculate the number of replicas for

a chunk based on its weight. Assume that we have n files
that all depend on one common chunk, called the central

chunk. Each file also depends on another peripheral chunk,

as shown in Figure 4, that is particular to that file alone. As-

sume that we keep k replicas of the single central chunk and
l replicas of the remaining peripheral chunks. We assume
that all chunks have the same size. The total storage used is

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

�������

	�
����

��������

����

�������

Figure 4. Central and peripheral chunks

then proportional to

S = k + l · n

Assume that a single storage device fails with probability

p. The central chunk is lost with probability pk and the

peripheral chunks with probability pl each. We lose all files

if we lose the central chunk; otherwise the expected number

of lost files L is npl, so that

L = npk + (1 − pk)npl
≈ npk + npl

Taking the derivative of the approximation for the loss, we

obtain the following relation for an optimal k:

n log(p)pk
− log(p)pl = 0

Solving for k gives

k =
S

n + 1
+

n

n + 1
·

log(n)

log(1/p)

The first addend converges to zero and the second is propor-

tional to the log(n). If the central chunk is much larger than
the smaller chunks and n is fixed, then replicating the pe-
ripheral chunks at a higher rate than the central chunk leads

to lower expected loss.

Even if a chunk has only a single dependency, it must be

protected. Therefore, our heuristic keeps at least 2 copies of

every chunk. We choose a function of type

k = f(w) = min(max(2, a + b log(w)), kmax)

to calculate the number of replicas k depending on a
chunk’s weight w. Here, a and b are constants that will
yield different storage space utilization and robustness lev-

els; a and b need to be determined experimentally depend-
ing on the data set. A base level of replication, a, is added as
an additional tuning parameter that is independent of w to
offset the effect of b log(w). As b increases, the number of
replicas, based on the weight w of a chunk, increases. For
some chunks with a large weight,w, the number of replicas
suggested by our logarithmic function can be very large. As

k increases the gain in reliability obtained due to each ad-
ditional replica diminishes. For this reason, the maximum

number of copies of a chunk is capped at kmax.

4.2. Chunk Distribution

In addition to the replication level for various chunks, the

placement of the replicas also affects the reliability of our

storage scheme. If a device is lost and almost all chunks

on the device belong to the same set of files that reside on

the lost device, then the effect of this failure has limited

repercussions for the rest of the system. Conversely, if a file

depends on chunks distributed over a large set of devices,

then it is more vulnerable since it is easier to lose this file

through the failure of any of those devices. Consequentially,

we want to reduce inter-device dependencies. Of course,
we should store copies of the same chunk on different de-

vices. Other than that, we try to store chunks belonging to

the same file on the same device.

Since our system stores archival data, we assume that

files enter the system in batches. As a file enters, the chunks

are extracted and stored, filling up the disks as data arrives,

on one disk at a time. When the current disk is full, a new

disk is used. If a chunk is new, it is stored on the current

disk, but not yet replicated in anticipation of another file in

the same batch using the same chunk. This lazy replication

scheme reduces inter-device dependencies. If a chunk is al-

ready in the system, the system determines whether, after

updating its weight, another replica must be stored. If this

is the case, the replica is stored on the current disk. Oth-

erwise, the system does nothing—there are sufficient repli-

cas for the chunk already. After the batch of files has fin-

ished processing, the weights of all the chunks are checked

to see if any of them need to be replicated. In such cases,

replicas for the latest chunks are stored on the most recently

used disk. While our scheme does not completely eliminate

inter-device dependencies, it greatly reduces them.

5. Experimental Setup

Our data set consists of two sets of files obtained from

the Internet Archive [29] and the other from the Santa Cruz
Sentinel [30]. As described in Section 3, the data set from
the Internet Archive contains web sites as they develop over

time. The Santa Cruz Sentinel, our local newspaper, main-
tains an archive, as do many newspapers. This set con-

sists of HTML, PDF, image (TIFF and JPG) and Microsoft

Word files with quite a bit of repetitive information such as

templates for web pages. Table 1 gives statistics for both

data sets, showing that both data sets are well-suited for

chunk-based compression. The use of chunk-based com-

pression results in substantial savings in storage space when

compared to the storage space required when using LZ-

compression to compress each file individually.

We used our prototype program chc [34] to chunk files.
The files that form the target data set were input to chc,
producing an output composed of chunks derived from the

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

Table 1. Statistics of the Experimental Data
Internet Santa Cruz

Archive Sentinel

Number of Files 196664 158900

Minimum File Size 1 B 2 B

Maximum File Size 21 MB 263.78 MB

Average File Size 52.50 kB 301.46 kB

Total File Space 9.84 GB 40.22 GB

LZ-compressed File Space 5.62 GB 31.14 GB

Unique Chunks 6240360 28806477

Minimum Chunk Size 9 B 9 B

Maximum Chunk Size 12.61 kB 12.61 kB

Average Chunk Size 299.90 B 243.11 B

Total Chunk Space 1.83 GB 7.5 GB

original files. These chunks were further compressed in-

dividually using the zlib [10] compression library. chc
captures a list of chunk identifiers for each file, as well

as the identifier and size for each chunk. Extended size

blocks—megablocks [34]—were used to store both chunks
and LZ-compressed files to minimize the storage overhead

from unused portions of blocks. Since the metadata for file

identifiers and size of every file needs to be stored for LZ-

compressed files as well, the storage overhead due to this

metadata has been omitted for both chunk-based compres-

sion and LZ-compressed files. However, the overhead of

a 128-bit content address for every chunk, whether origi-
nal or replica, and for all chunk identifiers per file has been

accounted for when calculating the total storage space re-

quired when using chunk-based compression.

To evaluate the success of our heuristic-based replica-

tion strategy, we measured the ratio of availability to the

utilized storage space. Evaluation of the latter is easy, while

the former is difficult because availability depends on too

many factors such as data placement, speed of recovery and

device failure rates. Further, availability calculations make

simplifying assumptions that are not always justified, such

as independent failures of devices and constant device fail-

ure rates. In addition, an archival storage system tries to

protect data over a period of time that is longer than the

lifespan of the individual devices and, in such a system,

common causes of failures such as batch and vintage fail-

ures become important. Instead of trying to make a num-

ber of reasonable assumptions and ending up with a large

number of possible storage systems, we decided to measure

availability in the form of robustness, defined as the fraction
of data available given a certain percentage of unavailable

storage devices, rather than in the usual metric of mean time

to data loss or percentage of data loss per year.

In this assessment, we assume a simple model based on

replication—the only way we introduce redundancy is by

storing more replicas. Thoughwe decided to use replication

instead of more involved mechanisms to generate redun-

dancy, there are still many potential parameters to choose

in a storage system, such as replica placement, failure de-

tection and repair. Since our target applications are so large

that they store data on hundreds, if not thousands of disk

drives, we use artificially small devices to store the data so

that our sample workloads are stored overmany devices. By

not modeling repairs of failed devices, we are being conser-

vative. This is important because, in any real system, re-

pairs would occur after a failure, so there would be a much

smaller chance of data loss.

To test the robustness of the system, we began by se-

lecting a percentage of devices independently and at ran-

dom and failing them, starting with 1 device and contin-

uing until 7% of the total devices have failed. By show-

ing availability at relatively low levels of device failure, we

simulated the effects of temporary device loss. The devices

would be replaced later, but the data on them is lost due

to failure. The same is true for mirrored LZ-compressed

files. We used the chunk distribution strategy of Section 4

to store chunks extracted from both the data sets onto a set

of devices. The same distribution strategy was used with

LZ-compressed files. The mirrored LZ-compressed files of

the Internet Archive were stored evenly on 188 devices of

64 MB each while those of the Santa Cruz Sentinel were
stored evenly on 132 devices of 512 MB each. However,

every device was filled to capacity. Hence, measuring the

percentage of failed devices was equivalent to measuring
the percentage of data lost. The capacity of every device

was increased for Santa Cruz Sentinel data to avoid frag-
mentation of a file across several devices. We had to take

care not to fragment files when using LZ-compression be-

cause this would introduce the same type of multiple-device

dependencies for files that arise when using the chunking

method, the effects of which we were measuring. Chunks

for both data sets were stored on smaller devices than those

used when storing the same data that was LZ-compressed to

make sure that we distributed chunks onto the same number

of devices as those used by the mirrored LZ-compressed

files thereby facilitating a fair comparison between the two.

We ended up using an additional 5 disks on average when

storing chunks. We could not ensure using exactly 188/132
devices since it was not possible to know apriori the num-

ber of redundant chunks that would be added with different

redundancy schemes. Once we randomly chose the failed

devices, we then calculated how many files and how much

data we could reconstruct using the remaining devices. The

performance of chunk-based compression was compared

with that of LZ-compressed files on the basis of the robust-

ness and storage space consumed.

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

6. Results

We calculate the weight, w, of a chunk using two heuris-
tics: the number of files and the size of data depending on

a chunk. The weight of a chunk in terms of the number of

files, F , depending on a chunk, is calculated asw = F . The
weight of a chunk in terms of the size of the dependent data

is calculated as w = D/d, where D is the sum of the sizes
of all the files that depend on this chunk and d is the average
size of a chunk. The number of replicas, k, calculated using
w in the log based function of Section 4.1, is rounded off to
the nearest integer. For each experiment we have measured

the storage space used as a percentage of the storage space

used by the original uncompressed data.

a = 1 38.91%
a = 2 41.79%
a = 3 60.31%

mirrored LZ-compressed 114%

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 1 2 3 4 5 6 7

%
 F

ile
s

A
va

ila
bl

e

% Device Failures

a=1
a=2
a=3
mirrored LZ-compressed

Figure 5. Effect of a on robustness using
heuristic w = F with b = 1, kmax = 4

The first set of experiments demonstrates the use of the

two heuristics. We wanted to study how the robustness is

affected by varying the base level of replication, a. By in-
creasing the base replication level, the number of replicas

for all the chunks increases, resulting in better robustness.
The results of these experiments, conducted using Internet

Archive data and with kmax = 4, are shown in Figures 5
and 6.

In Figure 5 we show robustness using the number of files

depending on a chunk as a heuristic, i. e. w = F . Hence,
we measured availability in the number of files available,

not amount of data available. Here, with b = 1, we vary a
and see that the robustness increases with increasing values

of a. The system is not very robust when a = 1 because
when using a = 1, 90% of the chunks were replicated just
once. We showed in Section 3 that when all the chunks are

uniformly replicated just once, the robustness suffers. We

see the same effects when a = 2, where around 80% of the
total chunks were replicated just once. At a = 3, our system
is more robust than mirrored LZ-compressed files and uses
only 52.75% of the storage space required by mirrored LZ-

compressed files.

a = 0 67.23%
a = 0.25 68.34%
a = 0.5 69.97%

a = 1 72.19%
mirrored LZ-compressed 114%

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

A
va

ila
bl

e

% Device Failures

a=0
a=0.25
a=0.5
a=1
mirrored LZ-compressed

Figure 6. Effect of a on robustness using
heuristic w = D/d with b = 0.4, kmax = 4

In Figure 6, we show a similar effect of a on the ro-
bustness, but, using dependent data as a heuristic, i. e.,
w = D/d, with b = 0.4. Again, we see that by increas-
ing a the system’s robustness improves. At a = 0.5, our
system is more robust than mirrored LZ-compressed files

and uses only 61.20% of the storage space used by mir-

rored LZ-compressed files. Further increase in a increases
the robustness even more, albeit at the expense of additional

storage space.

The results of the above experiments show that the ro-

bustness of our system exhibits the same trends when we

use either heuristic, w = F or w = D/d. The rest of the
results presented here use dependent data as the heuristic,

i. e.,w = D/d; however, the same trends are found with the
number of references being used as a heuristic.

If we do not restrict the number of replicas of a chunk,

k, to a predefined maximum, kmax, some chunks end up

having a very large number of replicas, especially for higher

values of b. However, as the number of replicas increases,
the gain in robustness that every replica rewards us with

diminishes in value. To study the effect of varying kmax, we

measured the robustness of the Internet Archive data with

b = 0.55 and a = 0, as shown in Figure 7 for kmax = 4
and kmax = 5 compared with that obtained with no limit on
k. It is clear that limiting the number of replicas with kmax

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

kmax = 4 70.66%
kmax = 5 84.05%
no limit on k 90.23%

mirrored LZ-compressed 114%

 99.6

 99.7

 99.8

 99.9

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

A
va

ila
bl

e

% Device Failures

max 4 copies
max 5 copies
no max limit
mirrored LZ-compressed

Figure 7. Effect of limiting k on robustness
using heuristic w = D/d, b = 0.55, a = 0

does not result in a noticeable loss in robustness, but does
result in significant savings in storage space.

In our next experiment, we studied the effects of vary-

ing b, which will improve robustness by increasing the
number of replicas for the more important (higher weight)

chunks. This comparison is shown in Figure 8 using Inter-

net Archive data. As b increases, for a given w we begin to
get higher values for k, resulting in an increase in the stor-
age space required and the robustness of the system as can

be seen in Figure 8. At b = 0.55, our system is more robust
than mirrored LZ-compressed files, but uses only 61.98%

of the storage space required by LZ-compressed files.

Figure 9 depicts the robustness of the second data set,

from the Santa Cruz Sentinel, when using different values

for b. Here, too, our approach is more robust than when
using mirrored LZ-compressed files. With b = 1, we use
only 48.41% of storage space of the base LZ-compression

approach.

As we increase the redundancies the storage space re-

quired by metadata also increases. For the Internet Archive

data the storage space used by the metadata constituted 5%
of the total storage space. For the Santa Cruz Sentinel the
metadata required 5.6% of the total storage space.

We have used both, the number of files and the amount of

the dependent data as heuristics for determining the weight

of a chunk. The choice of heuristic depends on the corpus.

If the sizes of files in a corpus are indicative of their impor-

tance, then the dependent data heuristic should be chosen.

However, if the importance of a file in a corpus is inde-

pendent of its size, or all the files in the corpus are equally

important, then the number of files should be chosen as

b = 0.4 67.23%
b = 0.5 68.46%

b = 0.55 70.66%
b = 0.6 71.78%

b = 1 75.60%
mirrored LZ-compressed 114%

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

A
va

ila
bl

e

% Device Failures

b=0.4
b=0.5
b=0.55
b=0.6
b=1
mirrored LZ-compressed

Figure 8. Effect of b on robustness using
heuristic w = D/d with a = 0, kmax = 4

a heuristic. The same metric used in the heuristic must

then be used for measuring the robustness of the system;

i. e., when using the number of files in the heuristic we use
the number of available files as the measure of robustness,

whereas when using dependent data as heuristic we use the

amount of available data. In other words, if all the files are

equally important, then one should measure the system ro-

bustness in the number or percentage of files available. We

have investigated the effects of the parameters a, b and kmax

on the robustness and the storage costs of an archival system

using chunk-based compression. By choosing an appropri-

ate combination of these parameters we can achieve both a

higher robustness and lower storage space utilization com-

pared to traditional LZ-compression techniques.

7. Related Work

Several systems that exploit data redundancy at differ-

ent levels of granularity have been developed in order to

improve storage space efficiency. One class of systems de-

tects redundant chunks of data at granularities that range

from entire file, as in EMC’s Centera [11], down to individ-

ual fixed-size disk blocks, as in Venti [23] and variable-size

data chunks as in LBFS [17].

RAID [6] is a device driven method for introducing re-

dundancy and thus ensuring the reliability for storage sys-

tems. OceanStore [14] aims to provide continuous access to

persistent data on a global scale and uses automatic replica-

tion strategies to boost reliability of the system in the face

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

b = 0.4 72.69%
b = 0.5 74.10%

b = 0.55 74.72%
b = 1 74.96%

mirrored LZ-compressed 154.84%

 99.6

 99.65

 99.7

 99.75

 99.8

 99.85

 99.9

 99.95

 100

 0 1 2 3 4 5 6 7

%
 D

at
a

A
va

ila
bl

e

% Device failures

b=0.4
b=0.5
b=0.55
b=1
mirrored LZ-compressed

Figure 9. Effect of b on robustness using
heuristic w = D/d with a = 0, kmax = 5, Santa
Cruz Sentinel data

of disasters. FARSITE [1] is a distributed file system that

achieves reliability through replication of file system meta-

data, such as directories, and file data. FARSITE chooses

replication instead of erasure coding schemes to avoid the

additional overhead of latter when reconstructing a piece

of information. Other file systems such as PASIS [12]

and Glacier [13] also make use of aggressive replication to

guard against data loss. The LOCKSS project [15] uses a

peer-to-peer audit and repair protocol to preserve the in-

tegrity and long-term access to collections of documents.

Baker et al. [5] suggest that long term reliability addition-
ally requires auditing the integrity of data above the level of

the storage devices. The surplus storage space we save by

using interfile compression can be used to implement proac-

tive policies for ensuring reliability [31], verifying the data

integrity [27], and developing recovery strategies [32] for

large scale storage systems.

8. Future Work

In addition to chunk-based compression, Deep Store also

uses delta compression to archive data. We will study the

characteristics of delta compression and develop heuristics

for reliability as we have done here for chunk-based com-

pression.

In this work, we have used only one method of intro-

ducing redundancies; replication. We will experiment with

other mechanisms such as RAID-5 parity, erasure correct-

ing codes, and Reed-Solomon block codes [3, 22, 26].

We will also address the problem of data placement or

chunk storage in conjunction with the hardware and its fail-

ure statistics such as, mean time to failure of disks. While

increasing the redundancy of a high risk chunk we will

use such statistical data to formulate strategies regarding

whether the redundant chunkmust be stored on another sec-

tor of the disk, another disk or another device altogether.

9. Conclusions

The chunk-based inter-file compression used in the Deep

Store archival system gives very good compression ratios

by removing inter-file redundancies. However, these re-

duced redundancies can be detrimental to the robustness of

the data. We have presented a simple strategy to increase

the robustness of data with chunk-based compression with-

out compromising the storage space savings obtained by the

compression. Our strategy allows us to control the balance

between storage space savings and reliability by a choice

of heuristics and parameter variation. This strategy gives

both a higher robustness and significant storage space sav-

ings compared with traditional LZ-based compression.

We have shown that choosing the right number of repli-

cas for each data chunk can achieve a much higher robust-

ness while using about half of the storage space required

by mirrored LZ-compression. Furthermore, by controlling

the parameters in our replication strategy, we can achieve an

even higher robustness (close to 100%) for a small percent-

age of device failures. This higher robustness together with

the savings in storage space is useful for future inclusion of

repair models for the Deep Store archival system. Our per-

formance can only improve when we use other redundancy

strategies such as RAID and erasure codes. By adjusting

the number of replicas of individual data chunks based on

our heuristics, Deep Store and other long-term archives can

reduce storage space requirements and thus costs while si-

multaneously increasing robustness, making the long-term

storage of data both more affordable and more reliable.

10. Acknowledgments

The authors would like to thank Bruce Baumgart of In-

ternet Archive, Mike Blaesser and Bob Smith of the Santa

Cruz Sentinel for giving them access to their data for this

work, Mary Baker of Hewlett-Packard Laboratories for her

comments, Lawrence You for his help with the use of the

Deep Store prototype, and Kevin Greenan for his excellent

systems support.

This research was supported in part by a grant from

Hewlett-Packard Laboratories, Microsoft Research, and by

National Science Foundation Grant CCR-0310888. We

would also like to thank the industrial sponsors of the

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

SSRC, including IBM Research, Intel, Microsoft Research,

Network Appliance, Rocksoft, Symantec, and Yahoo! for

their generous support.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-

mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and

R. Wattenhofer. FARSITE: Federated, available, and reliable

storage for an incompletely trusted environment. In Proceed-
ings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, Dec. 2002. USENIX.

[2] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L. Stock-

meyer. Compactly encoding unstructured inputs with differ-

ential compression. Journal of the Association for Comput-
ing Machinery, 49(3):318–367, May 2002.

[3] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating

multiple failures in RAID architectures with optimal storage

and uniform declustering. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture, pages 62–
72, Denver, CO, June 1997. ACM.

[4] Avamar Technologies Inc. http://www.avamar.com.
[5] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos,

P. Maniatis, T. Giuli, and P. Bungale. A fresh look at the

reliability of long-term digital storage. In Proceedings of
EuroSys 2006, pages 221–234, Apr. 2006.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and

D. A. Patterson. RAID: High-performance, reliable sec-

ondary storage. ACM Computing Surveys, 26(2):145–185,
June 1994.

[7] Data Domain. http://www.datadomain.com.
[8] Diligent Technologies. http://www.diligent.com.
[9] F. Douglis and A. Iyengar. Application-specific delta-

encoding via resemblance detection. In Proceedings of the
2003 USENIX Annual Technical Conference, pages 113–
126. USENIX, June 2003.

[10] zlib Compression Library. http://www.zlib.net.
[11] EMC Corporation. EMC Centera: Content Addressed Stor-

age System, Data Sheet, Apr. 2002.
[12] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.

Efficient Byzantine-tolerant erasure-coded storage. In Pro-
ceedings of the 2004 International Conference on Depend-
able Systems and Networking (DSN 2004), June 2004.

[13] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly

durable, decentralized storage despite massive correlated

failures. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI), Boston, MA,
May 2005. USENIX.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,

C. Wells, and B. Zhao. OceanStore: An architecture for

global-scale persistent storage. In Proceedings of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
Cambridge, MA, Nov. 2000. ACM.

[15] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosen-

thal, and M. Baker. The LOCKSS peer-to-peer digital preser-

vation system. ACM Transactions on Computer Systems,
23(1):2–50, 2005.

[16] J. McKnight, T. Asaro, and B. Babineau. Digital Archiv-

ing: End-User Survey and Market Forecast 2006–2010. The
Enterprise Strategy Group, Jan. 2006.

[17] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-

bandwidth network file system. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP
’01), Oct. 2001.

[18] Nexsan Technologies. http://www.nexsan.com.
[19] NIST. Secure hash standard. FIPS 180-1, Apr. 1995.
[20] NIST. Secure hash standard. FIPS 180-2, Aug. 2002.
[21] Permabit Inc. http://www.permabit.com.
[22] J. S. Plank. A tutorial on Reed-Solomon coding for fault-

tolerance in RAID-like systems. Software—Practice and Ex-
perience (SPE), 27(9):995–1012, Sept. 1997. Correction in
James S. Plank and Ying Ding, Technical Report UT-CS-03-

504, U Tennessee, 2003.
[23] S. Quinlan and S. Dorward. Venti: A new approach to

archival storage. In Proceedings of the First Conference on
File and Storage Technologies (FAST), pages 89–101, Mon-
terey, California, USA, 2002. USENIX.

[24] M. O. Rabin. Fingerprinting by random polynomials. Tech-

nical Report TR-15-81, Center for Research in Computing

Technology, Harvard University, 1981.
[25] R. Rivest. The MD5 message-digest algorithm. Request For

Comments (RFC) 1321, IETF, Apr. 1992.
[26] T. J. Schwarz. Generalized Reed Solomon codes for erasure

correction in SDDS. In Workshop on Distributed Data and
Structures (WDAS 2002), Paris, Mar. 2002.

[27] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,

A. Hospodor, and S. Ng. Disk scrubbing in large archival

storage systems. In Proceedings of the 12th Interna-
tional Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ’04),
pages 409–418. IEEE, Oct. 2004.

[28] Storage Technology Corp. http://www.storagetek.com.
[29] The Internet Archive. http://www.archive.org.
[30] The Santa Cruz Sentinel. http://www.santacruzsentinel.com.
[31] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E. Long, S. A.

Brandt, andW. Litwin. Reliability mechanisms for very large

storage systems. In Proceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage Systems and
Technologies, pages 146–156, Apr. 2003.

[32] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evaluation of dis-

tributed recovery in large-scale storage systems. In Proceed-
ings of the 13th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC), pages 172–181,
Honolulu, HI, June 2004.

[33] L. L. You and C. Karamanolis. Evaluation of efficient

archival storage techniques. In Proceedings of the 21st IEEE
/ 12th NASA Goddard Conference on Mass Storage Systems
and Technologies, College Park, MD, Apr. 2004.

[34] L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store: An

archival storage system architecture. In Proceedings of the
21st International Conference on Data Engineering (ICDE
’05), Tokyo, Japan, Apr. 2005. IEEE.

[35] J. Ziv and A. Lempel. A universal algorithm for sequential

data compression. IEEE Transactions on Information The-
ory, 23(3):337–343, 1977.

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

