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Abstract—Persistent memory is a new tier of memory that
functions as a hybrid of traditional storage systems and main
memory. It combines the benefits of both: the data persistence
of storage with the fast load/store interface of memory. Most
previous persistent memory designs place careful control over
the order of writes arriving at persistent memory. This can
prevent caches and memory controllers from optimizing system
performance through write coalescing and reordering. We
identify that such write-order control can be relaxed by
employing undo+redo logging for data in persistent memory
systems. However, traditional software logging mechanisms are
expensive to adopt in persistent memory due to performance
and energy overheads. Previously proposed hardware logging
schemes are inefficient and do not fully address the issues in
software.

To address these challenges, we propose a hardware
undo+redo logging scheme which maintains data persistence
by leveraging the write-back, write-allocate policies used in
commodity caches. Furthermore, we develop a cache force-
write-back mechanism in hardware to significantly reduce
the performance and energy overheads from forcing data
into persistent memory. Our evaluation across persistent
memory microbenchmarks and real workloads demonstrates
that our design significantly improves system throughput and
reduces both dynamic energy and memory traffic. It also
provides strong consistency guarantees compared to software
approaches.

I. INTRODUCTION

Persistent memory presents a new tier of data storage

components for future computer systems. By attaching Non-

Volatile Random-Access Memories (NVRAMs) [1], [2], [3],

[4] to the memory bus, persistent memory unifies memory

and storage systems. NVRAM offers the fast load/store

access of memory with the data recoverability of storage in a

single device. Consequently, hardware and software vendors

recently began adopting persistent memory techniques in

their next-generation designs. Examples include Intel’s ISA

and programming library support for persistent memory [5],

ARM’s new cache write-back instruction [6], Microsoft’s

storage class memory support in Windows OS and in-

memory databases [7], [8], Red Hat’s persistent memory

support in the Linux kernel [9], and Mellanox’s persistent

memory support over fabric [10].

Though promising, persistent memory fundamentally

changes current memory and storage system design assump-

tions. Reaping its full potential is challenging. Previous per-

sistent memory designs introduce large performance and en-

ergy overheads compared to native memory systems, without

enforcing consistency [11], [12], [13]. A key reason is the

write-order control used to enforce data persistence. Typical

processors delay, combine, and reorder writes in caches and

memory controllers to optimize system performance [14],

[15], [16], [13]. However, most previous persistent memory

designs employ memory barriers and forced cache write-

backs (or cache flushes) to enforce the order of persistent

data arriving at NVRAM. This write-order control is sub-

optimal for performance and do not consider natural caching

and memory scheduling mechanisms.

Several recent studies strive to relax write-order control

in persistent memory systems [15], [16], [13]. However,

these studies either impose substantial hardware overhead by

adding NVRAM caches in the processor [13] or fall back to

low-performance modes once certain bookkeeping resources

in the processor are saturated [15].

Our goal in this paper is to design a high-performance

persistent memory system without (i) an NVRAM cache or

buffer in the processor, (ii) falling back to a low-performance

mode, or (iii) interfering with the write reordering by caches

and memory controllers. Our key idea is to maintain data

persistence with a combined undo+redo logging scheme in

hardware.

Undo+redo logging stores both old (undo) and new (redo)

values in the log during a persistent data update. It offers a

key benefit: relaxing the write-order constraints on caching

persistent data in the processor. In our paper, we show

that undo+redo logging can ensure data persistence without

needing strict write-order control. As a result, the caches and

memory controllers can reorder the writes like in traditional

non-persistent memory systems (discussed in Section II-B).

Previous persistent memory systems typically implement

either undo or redo logging in software. However, high-

performance software undo+redo logging in persistent mem-

ory is unfeasible due to inefficiencies. First, software logging

generates extra instructions in software, competing for lim-

ited hardware resources in the pipeline with other critical

workload operations. Undo+redo logging can double the

number of extra instructions over undo or redo logging
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alone. Second, logging introduces extra memory traffic in

addition to working data access [13]. Undo+redo logging

would impose more than double extra memory traffic in

software. Third, the hardware states of caches are invisible

to software. As a result, software undo+redo logging, an idea

borrowed from database mechanisms designed to coordinate

with software-managed caches, can only conservatively co-

ordinate with hardware caches. Finally, with multithreaded

workloads, context switches by the operating system (OS)

can interrupt the logging and persistent data updates. This

can risk the data consistency guarantee in multithreaded

environment (Section II-C discusses this further).

Several prior works investigated hardware undo or redo

logging separately [17], [15] (Section VII). These designs

have similar challenges such as hardware and energy over-

heads [17], and slowdown due to saturated hardware book-

keeping resources in the processor [15]. Supporting both

undo and redo logging can further exacerbate the issues.

Additionally, hardware logging mechanisms can eliminate

the logging instructions in the pipeline, but the extra memory

traffic generated from the log still exists.

To address these challenges, we propose a combined

undo+redo logging scheme in hardware that allows persis-

tent memory systems to relax the write-order control by

leveraging existing caching policies. Our design consists of

two mechanisms. First, a Hardware Logging (HWL) mech-

anism performs undo+redo logging by leveraging write-

back write-allocate caching policies [14] commonly used in

processors. Our HWL design causes a persistent data update

to automatically trigger logging for that data. Whether a

store generates an L1 cache hit or miss, its address, old

value, and new value are all available in the cache hierarchy.

As such, our design utilizes the cache block writes to update

the log with word-size values. Second, we propose a cache

Force Write-Back (FWB) mechanism to force write-backs

of cached persistent working data in a much lower, yet more

efficient frequency than in software models. This frequency

depends only on the allocated log size and NVRAM write

bandwidth, thus decoupling cache force write-backs from

transaction execution. We summarize the contributions of

this paper as following:

• This is the first paper to exploit the combination of

undo+redo logging to relax ordering constraints on caches

and memory controllers in persistent memory systems.

Our design relaxes the ordering constraints in a way

that undo logging, redo logging, or copy-on-write alone

cannot.

• We enable efficient undo+redo logging for persistent

memory systems in hardware, which imposes substan-

tially more challenges than implementing either undo- or

redo- logging alone.

• We develop a hardware-controlled cache force write-back

mechanism, which significantly reduces the performance

overhead of force write-backs by efficiently tuning the

write-back frequency.

• We implement our design through lightweight software

support and processor modifications.

II. BACKGROUND AND MOTIVATION

Persistent memory is fundamentally different from tradi-

tional DRAM main memory or their NVRAM replacement,

due to its persistence (i.e., crash consistency) property

inherited from storage systems. Persistent memory needs

to ensure the integrity of in-memory data despite system

crashes and power loss [18], [19], [20], [21], [16], [22],

[23], [24], [25], [26], [27]. The persistence property is not

guaranteed by memory consistency in traditional memory

systems. Memory consistency ensures a consistent global

view of processor caches and main memory, while persistent

memory needs to ensure that the data in the NVRAM main

memory is standalone consistent [16], [19], [22].

A. Persistent Memory Write-order Control

To maintain data persistence, most persistent memory de-

signs employ transactions to update persistent data and care-

fully control the order of writes arriving in NVRAM [16],

[19], [28]. A transaction (e.g., the code example in Fig-

ure 1) consists of a group of persistent memory updates

performed in the manner of “all or nothing” in the face of

system failures. Persistent memory systems also force cache

write-backs (e.g., clflush, clwb, and dccvap) and use

memory barrier instructions (e.g., mfence and sfence)

throughout transactions to enforce write-order control [28],

[15], [13], [19], [29].

Recent works strived to improve persistent memory per-

formance towards a native non-persistent system [15], [16],

[13]. In general, whether employing logging in persistent

memory or not, most face similar problems. (i) They in-

troduce nontrivial hardware overhead (e.g., by integrating

NVRAM cache/buffers or substantial extra bookkeeping

components in the processor) [13], [30]. (ii) They fall back to

low-performance modes once the bookkeeping components

or the NVRAM cache/buffer are saturated [13], [15]. (iii)

They inhibit caches from coalescing and reordering persis-

tent data writes [13] (details discussed in Section VII).

Forced cache write-backs ensure that cached data up-

dates made by completed (i.e., committed) transactions

are written to NVRAM. This ensures NVRAM is in a

persistent state with the latest data updates. Memory barriers

stall subsequent data updates until the previous updates by

the transaction complete. However, this write-order control

prevents caches from optimizing system performance via

coalescing and reordering writes. The forced cache write-

backs and memory barriers can also block or interfere with

subsequent read and write requests that share the memory

bus. This happens regardless of whether these requests are

independent from the persistent data access or not [26], [31].
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Tx_begin 
  do some reads 
  do some computation 
  Uncacheable_log( addr(A), new_val(A), old_val(A) ) 
  write new_val(A)     //new_val(A) = A’ 
  clwb     // can be delayed 
Tx_commit 

Tx_begin 
  do some reads 
  do some computation 
  Uncacheable_Ulog( addr(A), old_val(A) ) 
  write new_val(A)     //new_val(A) = A’ 
  clwb  //force writeback 
Tx_commit 

Tx_begin 
  do some reads 
  do some computation 
  Uncacheable_Rlog( addr(A), new_val(A) ) 
  memory_barrier 
  write new_val(A)    //new_val(A) = A’ 
Tx_commit 

… 

… 

Redo logging of the transaction 

Undo logging of store A1 

Time 

Time 

“Write A” consists of N store instructions 

Tx commit 

Ulog_A1 Ulog_A2 Ulog_AN 

store A’1 

Logging 

store A’1 store A’N 

Tx begin 

Write A 

… Rlog_A’1 Rlog_A’2 Rlog_A’N 
store A’1 store A’1 store A’N 

… 

clwb A’1..A’N 

Tx commit 

… 

… 
Time 

Tx commit Rlog_A’1 Rlog_A’2 Rlog_A’N 

store A’1 store A’1 store A’N 

… Ulog_A1 Ulog_A2 Ulog_AN 

(a) 
 
 
 
 
(b) 
 
 
 
 
(c) 

Undo logging only 

Redo logging only 

Undo+redo logging 

Logging 

Write A 

Logging 

Write A 

Uncacheable Cacheable 

�������	
������

Figure 1. Comparison of executing a transaction in persistent memory with (a) undo logging, (b) redo logging, and (c) both undo and redo logging.

B. Why Undo+Redo Logging

While prior persistent memory designs only employ either

undo or redo logging to maintain data persistence, we

observe that using both can substantially relax the afore-

mentioned write-order control placed on caches.

Logging in persistent memory. Logging is widely used in

persistent memory designs [19], [29], [22], [15]. In addition

to working data updates, persistent memory systems can

maintain copies of the changes in the log. Previous designs

typically employ either undo or redo logging. Figure 1(a)

shows that an undo log records old versions of data before

the transaction changes the value. If the system fails during

an active transaction, the system can roll back to the state

before the transaction by replaying the undo log. Figure 1(b)

illustrates an example of a persistent transaction that uses

redo logging. The redo log records new versions of data.

After system failures, replaying the redo log recovers the

persistent data with the latest changes tracked by the redo

log. In persistent memory systems, logs are typically un-
cacheable because they are meant to be accessed only during

the recovery. Thus, they are not reused during application

execution. They must also arrive in NVRAM in order, which

is guaranteed through bypassing the caches.

Benefits of undo+redo logging. Combining undo and redo

logging (undo+redo) is widely used in disk-based database

management systems (DBMSs) [32]. Yet, we find that we

can leverage this concept in persistent memory design to

relax the write-order constraints on the caches.

Figure 1(a) shows that uncacheable, store-granular undo

logging can eliminate the memory barrier between the log

and working data writes. As long as the log entry (Ulog A1)

is written into NVRAM before its corresponding store to

the working data (store A′
1), we can undo the partially

completed store after a system failure. Furthermore, store
A′

1 must traverse the cache hierarchy. The uncacheable

Ulog A1 may be buffered (e.g., in a four to six cache-

line sized entry write-combining buffer in x86 processors).

However, it still requires much less time to get out of the

processor than cached stores. This naturally maintains the

write ordering without explicit memory barrier instructions

between the log and the persistent data writes. That is,

logging and working data writes are performed in a pipeline-

like manner (like in the timeline in Figure 1(a)). is similar to

the “steal” attribute in DBMS [32], i.e, cached working data

updates can steal the way into persistent storage before trans-

action commits. However, a downside is that undo logging

requires a forced cache write-back before the transaction

commits. This is necessary if we want to recover the latest

transaction state after system failures. Otherwise, the data

changes made by the transaction will not be committed to

memory.

Instead, redo logging allows transactions to commit with-

out explicit cache write-backs because the redo log, once

updates complete, already has the latest version of the

transactions (Figure 1(b)). This is similar to the “no-force”

attribute in DBMS [32], i.e., no need to force the working

data updates out of the caches at the end of transactions.

However, we must use memory barriers to complete the redo

log of A before any stores of A reach NVRAM. We illustrate

this ordering constraint by the dashed blue line in the

timeline. Otherwise, a system crash when the redo logging

is incomplete, while working data A is partially overwritten

in NVRAM (by store A′
k), causes data corruption.

Figure 1(c) shows that undo+redo logging combines the

benefits of both “steal” and “no-force”. As a result, we

can eliminate the memory barrier between the log and

persistent writes. A forced cache write-back (e.g., clwb) is

unnecessary for an unlimited sized log. However, it can be

postponed until after the transaction commits for a limited

sized log (Section II-C).
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Tx_begin(TxID) 
do some reads 
do some computation 
Uncacheable_log(addr(A),  
                       new_val(A),  
                         old_val(A)) 
 
write new_val(A) // A’ 
clwb  //conservatively used 
Tx_commit 

Micro-ops: 
load A1 
load A2 
… 
store log_A1 
store log_A2 
... 

(a)� (b)�

Micro-ops: 
store log_A’1 
store log_A’2 
... 

 
 

Shared Cache 

Core 
cache 

Memory Controller 

… Core 
cache 

Processor  

A 

NVRAM 
Rlog_A 

undo 

redo 

Ulog_A 

Rlog_B 

Ulog_B 

clwb 
A’k 

A’ 

! 

Rlog_C 
Ulog_C 

A 

A’k still in 
caches 

Nonvolatile 
Volatile 

Figure 2. Inefficiency of logging in software.

C. Why Undo+Redo Logging in Hardware

Though promising, undo+redo logging is not used in

persistent memory system designs because previous software

logging schemes are inefficient (Figure 2).

Extra instructions in the CPU pipeline. Logging in

software uses logging functions in transactions. Figure 2(a)

shows that both undo and redo logging can introduce a

large number of instructions into the CPU pipeline. As

we demonstrate in our experimental results (Section VI),

using only undo logging can lead to more than doubled

instructions compared to memory systems without persistent

memory. Undo+redo logging can introduce a prohibitively

large number of instructions to the CPU pipeline, occupying

compute resources needed for data movement.

Increased NVRAM traffic. Most instructions for logging

are loads and stores. As a result, logging substantially

increases memory traffic. In particular, undo logging must

not only store to the log, but it must also first read the

old values of the working data from the cache and memory

hierarchy. This further increases memory traffic.

Conservative cache forced write-back. Logs can have

a limited size1. Suppose that, without losing generality, a

log can hold undo+redo records of two transactions (Fig-

ure 2(b)). To log a third transaction (Ulog C and Rlog C),

we must overwrite an existing log record, say Ulog A and

Rlog A (transaction A). If any updates of transaction A
(e.g., A′

k) are still in caches, we must force these updates

into the NVRAM before we overwrite their log entry. The

problem is that caches are invisible to software. Therefore,

software does not know whether or which particular updates

to A are still in the caches. Thus, once a log becomes full

(after garbage collection), software may conservatively force

cache write-backs before committing the transaction. This

unfortunately negates the benefit of redo logging.

Risks of data persistence in multithreading. In addition

to the above challenges, multithreading further complicates

software logging in persistent memory, when a log is shared

by multiple threads. Even if a persistent memory system

1Although we can grow the log size on demand, this introduces extra
system overhead on managing variable size logs [19]. Therefore, we study
fixed size logs in this paper.

issues clwb instructions in each transaction, a context

switch by the OS can occur before the clwb instruction

executes. This context switch interrupts the control flow of

transactions and diverts the program to other threads. This

reintroduces the aforementioned issue of prematurely over-

writing the records in a filled log. Implementing per-thread

logs can mitigate this risk. However, doing so can introduce

new persistent memory API and complicates recovery.

These inefficiencies expose the drawbacks of undo+redo

logging in software and warrants a hardware solution.

III. OUR DESIGN

To address the challenges, we propose a hardware

undo+redo logging design, consisting of Hardware Logging

(HWL) and cache Force Write-Back (FWB) mechanisms.

This section describes our design principles. We describe

detailed implementation methods and the required software

support in Section IV.

A. Assumptions and Architecture Overview

Figure 3(a) depicts an overview of our processor and

memory architecture. The figure also shows the circular

log structure in NVRAM. All processor components are

completely volatile. We use write-back, write-allocate caches

common to processors. We support hybrid DRAM+NVRAM

for main memory, deployed on the processor-memory bus

with separate memory controllers [19], [13]. However, this

paper focuses on persistent data updates to NVRAM.

Failure Model. Data in DRAM and caches, but not in

NVRAM, are lost across system reboots. Our design fo-

cuses on maintaining persistence of user-defined critical data

stored in NVRAM. After failures, the system can recover

this data by replaying the log in NVRAM. DRAM is used

to store data without persistence [19], [13].

Persistent Memory Transactions. Like prior work in

persistent memory [19], [22], we use persistent memory

“transactions” as a software abstraction to indicate regions

of memory that are persistent. Persistent memory writes

require a persistence guarantee. Figure 2 illustrates a simple

code example of a persistent memory transaction imple-

mented with logging (Figure 2(a)), and our with design

(Figure 2(b)). The transaction defines object A as critical

data that needs persistence guarantee. Unlike most logging-

based persistent memory transactions, our transactions elim-

inate explicit logging functions, cache forced write-back

instructions, and memory barrier instructions. We discuss

our software interface design in Section IV.

Uncacheable Logs in the NVRAM. We use single-

consumer, single-producer Lamport circular structure [33]

for the log. Our system software can allocate and truncate

the log (Section IV). Our hardware mechanisms append the

log. We chose a circular log structure because it allows

simultaneous appends and truncates without locking [33],
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Figure 3. Overview of the proposed hardware logging in persistent memory.

[19]. Figure 3(a) shows that log records maintain undo and

redo information of a single update (e.g., store A1). In

addition to the undo (A1) and redo (A′
1) values, log records

also contain the following fields: a 16-bit transaction ID, an

8-bit thread ID, a 48-bit physical address of the data, and

a torn bit. We use a torn bit per log entry to indicate the

update is complete [19]. Torn bits have the same value for all

entries in one pass over the log, but reverses when a log entry

is overwritten. Thus, completely-written log records all have

the same torn bit value, while incomplete entries have mixed

values [19]. The log must accommodate all write requests

of undo+redo.

The log is typically used during system recovery, and

rarely reused during application execution. Additionally, log

updates must arrive in NVRAM in store-order. Therefore, we

make the log uncacheable. This is in line with most prior

works, in which log updates are written directly into a write-

combine buffer (WCB) [19], [31] that coalesces multiple

stores to the same cache line.

B. Hardware Logging (HWL)

The goal of our Hardware Logging (HWL) mechanism

is to enable feasible undo+redo logging of persistent data

in our microarchitecture. HWL also relaxes ordering con-

straints on caching in a manner that neither undo nor

redo logging can. Furthermore, our HWL design leverages

information naturally available in the cache hierarchy but

not to the programmer or software. It does so without

the performance overhead of unnecessary data movement

or executing logging, cache force-write-back, or memory

barrier instructions in pipeline.

Leveraging Existing Undo+Redo Information in Caches.
Most processors caches use write-back, write-allocate

caching policies [34]. On a write hit, a cache only updates

the cache line in the hitting level with the new values. A

dirty bit in the cache tag indicates cache values are modified

but not committed to memory. On a write miss, the write-

allocate (also called fetch-on-write) policy requires the cache

to first load (i.e., allocate) the entire missing cache line be-

fore writing new values to it. HWL leverages the write-back,

write-allocate caching policies to feasibly enable undo+redo

logging in persistent memory. HWL automatically triggers a

log update on a persistent write in hardware. HWL records

both redo and undo information in the log entry in NVRAM

(shown in Figure 2(b)). We get the redo data from the

currently in-flight write operation itself. We get the undo

data from the write request’s corresponding write-allocated

cache line. If the write request hits in the L1 cache, we

read the old value before overwriting the cache line and

use that for the undo log. If the write request misses in

L1 cache, that cache line must first be allocated anyway, at

which point we get the undo data in a similar manner. The

log entry, consisting of a transaction ID, thread, the address

of the write, and undo and redo values, is written out to the

circular log in NVRAM using the head and tail pointers.

These pointers are maintained in special registers described

in Section IV.

Inherent Ordering Guarantee Between the Log and
Data. Our design does not require explicit memory barriers

to enforce that undo log updates arrive at NVRAM before

its corresponding working data. The ordering is naturally en-

sured by how HWL performs the undo logging and working

data updates. This includes i) the uncached log updates and

cached working data updates, and ii) store-granular undo

logging. The working data writes must traverse the cache

hierarchy, but the uncacheable undo log updates do not.

Furthermore, our HWL also provides an optional volatile

log buffer in the processor, similar to the write-combining

buffers in commodity processor design, that coalesces the

log updates. We configure the number of log buffer entries

based on cache access latency. Specifically, we ensure that

the log updates write out of the log buffer before a cached
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store writes out of the cache hierarchy. Section IV-C and

Section VI further discuss and evaluate this log buffer.

C. Decoupling Cache FWBs and Transaction Execution

Writes are seemingly persistent once their logs are written

to NVRAM. In fact, we can commit a transaction once log-

ging of that transaction is completed. However, this does not

guarantee data persistence because of the circular structure

of the log in NVRAM (Section II-A). However, inserting

cache write-back instructions (such as clflush and clwb)

in software can impose substantial performance overhead

(Section II-A). This further complicates data persistence

support in multithreading (Section II-C).

We eliminate the need for forced write-back instructions

and guarantee persistence in multithreaded applications by

designing a cache Force-Write-Back (FWB) mechanism in

hardware. FWB is decoupled from the execution of each

transaction. Hardware uses FWB to force certain cache

blocks to write-back when necessary. FWB introduces a

force write-back bit (fwb) alongside the tag and dirty bit of

each cache line. We maintain a finite state machine in each

cache block (Section IV-D) using the fwb and dirty bits.

Caches already maintain the dirty bit: a cache line update

sets the bit and a cache eviction (write-back) resets it. A

cache controller maintains our fwb bit by scanning cache

lines periodically. On the first scan, it sets the fwb bit in

dirty cache blocks if unset. On the second scan, it forces

write-backs in all cache lines with {fwb, dirty} = {1, 1}.

If the dirty bit ever gets reset for any reason, the fwb bit

also resets and no forced write-back occurs.

Our FWB design is also decoupled from software multi-

threading mechanisms. As such, our mechanism is impervi-

ous to software context switch interruptions. That is, when

the OS requires the CPU to context switch, hardware waits

until ongoing cache write-backs complete. The frequency

of the forced write-backs can vary. However, forced write-

backs must be faster than the rate at which log entries

with uncommitted persistent updates are overwritten in the

circular log. In fact, we can determine force write-back

frequency (associated with the scanning frequency) based on

the log size and the NVRAM write bandwidth (discussed in

Section IV-D). Our evaluation shows the frequency determi-

nation (Section VI).

D. Instant Transaction Commits

Previous designs require software or hardware memory

barriers (and/or cache force-write-backs) at transaction com-

mits to enforce write ordering of log updates (or persistent

data) into NVRAM across consecutive transactions [13],

[26]. Instead, our design gives transaction commits a “free

ride”. That is, no explicit instructions are needed. Our

mechanisms also naturally enforce the order of intra- and

inter-transaction log updates: we issue log updates in the

order of writes to corresponding working data. We also

write the log updates into NVRAM in the order they are

issued (the log buffer is a FIFO). Therefore, log updates of

subsequent transactions can only be written into NVRAM

after current log updates are written and committed.

E. Putting It All Together

Figure 3(b) and (c) illustrate how our hardware logging

works. Hardware treats all writes encompassed in persistent

transactions (e.g., write A in the transaction delimited by

tx_begin and tx_commit in Figure 2(b)) as persistent

writes. Those writes invoke our HWL and FWB mecha-

nisms. They work together as follows. Note that log updates

go directly to the WCB or NVRAM if the system does not

adopt the log buffer.

The processor sends writes of data object A (a variable or

other data structure), consisting of new values of one or more

cache lines {A′
1, A

′
2, ...}, to the L1 cache. Upon updating an

L1 cache line (e.g., from old value A1 to a new value A′
1):

1) Write the new value (redo) into the cache line (�).

a) If the update is the first cache line update of

data object A, the HWL mechanism (which has

the transaction ID and the address of A from

the CPU) writes a log record header into the log

buffer.

b) Otherwise, the HWL mechanism writes the new

value (e.g., A′
1) into the log buffer.

2) Obtain the undo data from the old value in the cache

line (�). This step runs parallel to Step-1.

a) If the cache line write request hits in L1 (Fig-

ure 3(b)), the L1 cache controller immediately

extracts the old value (e.g., A1) from the cache

line before writing the new value. The cache

controller reads the old value from the hitting

line out of the cache read port and writes it into

the log buffer in the Step-3. No additional read

instruction is necessary.

b) If the write request misses in the L1 cache

(Figure 3(c)), the cache hierarchy must write-

allocate that cache block as is standard. The

cache controller at a lower-level cache that owns

that cache line extracts the old value (e.g., A1).

The cache controller sends the extracted old

value to the log buffer in Step-3.

3) Update the undo information of the cache line: the

cache controller writes the old value of the cache line

(e.g., A1) to the log buffer (�).

4) The L1 cache controller updates the cache line in the

L1 cache (�). The cache line can be evicted via stan-

dard cache eviction policies without being subjected

to data persistence constraints. Additionally, our log

buffer is small enough to guarantee that log updates

traverse through the log buffer faster than the cache

line traverses the cache hierarchy (Section IV-D).
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Therefore, this step occurs without waiting for the

corresponding log entries to arrive in NVRAM.

5) The memory controller evicts the log buffer entries

to NVRAM in a FIFO manner (�). This step is

independent from other steps.

6) Repeat Step-1-(b) through 5 if the data object A

consists of multiple cache line writes. The log buffer

coalesces the log updates of any writes to the same

cache line.

7) After log entries of all the writes in the transaction are

issued, the transaction can commit (�).

8) Persistent working data updates remain cached until

they are written back to NVRAM by either normal

eviction or our cache FWB.

F. Discussion
Types of Logging. Systems with non-volatile memory

can adopt centralized [35] or distributed (e.g., per-thread)

logs [36], [37]. Distributed logs can be more scalable than

centralized logs in large systems from software’s perspec-

tive. Our design works with either type of logs. With

centralized logging, each log record needs to maintain a

thread ID, while distributed logs do not need to maintain

this information in log records. With centralized log, our

hardware design effectively reduces the software overhead

and can substantially improve system performance with real

persistent memory workloads as we show in our experi-

ments. In addition, our design also allows systems to adopt

alternative formats of distributed logs. For example, we can

partition the physical address space into multiple regions and

maintain a log per memory region. We leave the evaluation

of such log implementations to our future work.

NVRAM Capacity Utilization. Storing undo+redo log can

consume more NVRAM space than either undo or redo

alone. Our log uses a fixed-size circular buffer rather than

doubling any previous undo or redo log implementation.

The log size can trade off with the frequency of our

cache FWB (Section IV). The software support discussed

in Section IV-A allow users to determine the size of the log.

Our FWB mechanism will adjust the frequency accordingly

to ensure data persistence.

Lifetime of NVRAM Main Memory. The lifetime of the

log region is not an issue. Suppose a log has 64K entries

( 4MB) and NVRAM (assuming phase-change memory) has

a 200 ns write latency. Each entry will be overwritten once

every 64K × 200 ns. If NVRAM endurance is 108 writes,

a cell, even statically allocated to the log, will take 15

days to wear out, which is plenty of time for conventional

NVRAM wear-leveling schemes to trigger [38], [39], [40].

In addition, our scheme has two impacts on overall NVRAM

lifetime: logging normally leads to write amplification, but

we improve NVRAM lifetime because our caches coalesce

writes. The overall impact is likely slightly negative. How-

ever, wear-leveling will trigger before any damage occurs.

void persistent_update( int threadid )
{

tx_begin( threadid );
// Persistent data updates
write A[threadid];
tx_commit();

}
// ...
int main()
{

// Executes one persistent
// transaction per thread
for ( int i = 0; i < nthreads; i++ )

thread t( persistent_update, i );
}

Figure 4. Pseudocode example for tx_begin and tx_commit, where
thread ID is transaction ID to perform one persistent transaction per thread.

IV. IMPLEMENTATION

In this section, we describe the implementation details of

our design and hardware overhead. We covered the impact

of NVRAM space consumption, lifetime, and endurance in

Section III-F.

A. Software Support

Our design has software support for defining persistent

memory transactions, allocating and truncating the circular

log in NVRAM, and reserving a special character as the log

header indicator.

Transaction Interface. We use a pair of transaction func-

tions, tx_begin( txid ) and tx_commit(), that de-

fine transactions which do persistent writes in the program.

We use txid to provide the transaction ID information used

by our HWL mechanism. This ID is groups writes from the

same transaction. This transaction interface has been used

by numerous previous persistent memory designs [13], [29].

Figure 4 shows an example of multithreaded pseudocode

with our transaction functions.

System Library Functions Maintain the Log. Our HWL

mechanism performs log updates, while the system software

maintains the log structure. In particular, we use system li-

brary functions, log_create() and log_truncate()
(similar to functions used in prior work [19]), to allocate and

truncate the log, respectively. The system software sets the

log size. The memory controller obtains log maintenance

information by reading special registers (Section IV-B),

indicating the head and tail pointers of the log. Further-

more, a single transaction that exceeds the originally al-

located log size can corrupt persistent data. We provide

two options to prevent overflows: 1) The log_create()
function allocates a large-enough log by reading the max-

imum transaction size from the program interface (e.g.,

#define MAX_TX_SIZE N); 2) An additional library

function log_grow() allocates additional log regions

when the log is filled by an uncommitted transaction.
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B. Special Registers

The txid argument from tx_begin() translates into

an 8-bit unsigned integer (a physical transaction ID) stored

in a special register in the processor. Because the transaction

IDs group writes of the same transactions, we can simply

pick a not-in-use physical transaction ID to represent a

newly received txid. An 8-bit length can accommodate

256 unique active persistent memory transactions at a time.

A physical transaction ID can be reused after the transaction

commits.

We also use two 64-bit special registers to store the

head and tail pointers of the log. The system library ini-

tializes the pointer values when allocating the log using

log_create(). During log updates, the memory con-

troller and log_truncate() function update the pointers.

If log_grow() is used, we employ additional registers to

store the head and tail pointers of newly allocated log regions

and an indicator of the active log region.

C. An Optional Volatile Log Buffer

To improve performance of log updates to NVRAM, we

provide an optional log buffer (a volatile FIFO, similar to

WCB) in the memory controller to buffer and coalesce log

updates. This log buffer is not required for ensuring data

persistence, but only for performance optimization.

Data persistence requires that log records arrive at

NVRAM before the corresponding cache line with the

working data. Without the log buffer, log updates are di-

rectly forced to the NVRAM bus without buffering in the

processor. If we choose to adopt a log buffer with N entries,

a log entry will take N cycles to reach the NVRAM bus.

A data store sent to the L1 cache takes at least the latency

(cycles) of all levels of cache access and memory controller

queues before reaching the NVRAM bus. The the minimum

value of this latency is known at design time. Therefore,

we can ensure that log updates arrive at the NVRAM bus

before the corresponding data stores by designing N to be

smaller than the minimum number of cycles for a data store

to traverse through the cache hierarchy. Section VI evaluates

the bound of N and system performance across various log

buffer sizes based on our system configurations.

D. Cache Modifications

To implement our cache force write-back scheme, we add

one fwb bit to the tag of each cache line, alongside the dirty
bit as in conventional cache implementations. FWB maintain

three states (IDLE, FLAG, and FWB) for each cache block

using these state bits.

Cache Block State Transition. Figure 5 shows the finite-

state machine for FWB, implemented in the cache controller

of each level. When an application begins executing, cache

controllers initialize (reset) each cache line to the IDLE

state by setting fwb bit to 0. Standard cache implementation

also initializes dirty and valid bits to 0. During application

force-write-back 

cache 
line 
write set 

fwb=1 

write-back 

not 
dirty fwb,dirty 

={0,0} 
fwb,dirty  
= {0,1} 

fwb,dirty  
= {1,1} 

reset 

�����
�

�����
�

��	�
�

Figure 5. State machine in cache controller for FWB.

execution, baseline cache controllers naturally set the dirty
and valid bits to 1 whenever a cache line is written and reset

the dirty bit back to 0 after the cache line is written back

to a lower level (typically on eviction). To implement our

state machine, the cache controllers periodically scan the

valid, dirty, and fwb bits of each cache line and performs

the following.

• A cache line with {fwb, dirty} = {0, 0} is in IDLE state;

the cache controller does nothing to those cache lines;

• A cache line with {fwb, dirty} = {0, 1} is in the FLAG

state; the cache controller sets the fwb bit to 1. This

indicates that the cache line needs a write-back during

the next scanning iteration if it is still in the cache.

• A cache line with {fwb, dirty} = {1, 1} is in FWB state;

the cache controller force writes-back this line. After the

forced write-back, the cache controller changes the line

back to IDLE state by resetting {fwb, dirty} = {0, 0}.

• If a cache line is evicted from the cache at any point, the

cache controller resets its state to IDLE.

Determining the Cache FWB Frequency. The tag scanning

frequency determines the frequency of our cache force write-

back operations. The FWB must occur as frequently as to

ensure that the working data is written back to NVRAM

before its log records are overwritten by newer updates.

As a result, the more frequent the write requests, the more

frequent the log will be overwritten. The larger the log,

the less frequent the log will be overwritten. Therefore,

the scanning frequency is determined by the maximum log

update frequency (bounded by NVRAM write bandwidth

since applications cannot write to the NVRAM faster than

its bandwidth) and log size (see the sensitivity study in

Section VI). To accommodate large cache sizes with low

scanning performance overhead, we also grow the size of

the log to reduce the scanning frequency accordingly.

E. Summary of Hardware Overhead

Table I presents the hardware overhead of our imple-

mented design in the processor. Note that these values

may vary depending on the native processor and ISA. Our

implementation assumes a 64-bit machine, hence why the

circular log head and tail pointers are 8 bytes. Only half of

these bytes are required in a 32-bit machine. The size of

the log buffer varies based on the size of the cache line.

The size of the overhead needed for the fwb state varies on

the total number of cache lines at all levels of cache. This

is much lower than previous studies that track transaction
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Mechanism Logic Type Size
Transaction ID register flip-flops 1 Byte

Log head pointer register flip-flops 8 Bytes

Log tail pointer register flip-flops 8 Bytes

Log buffer (optional) SRAM 964 Bytes

Fwb tag bit SRAM 768 Bytes

Table I
SUMMARY OF MAJOR HARDWARE OVERHEAD.

information in cache tags [13]. The numbers in the table

were computed based on the specifications of all our system

caches described in Section V.

Note that these are major state logic components on-

chip. Our design also also requires additional gates for logic

operations. However, these gates are primarily small and

medium-sized gates, on the same complexity level as a

multiplexer or decoder.

F. Recovery

We outline the steps of recovering the persistent data in

systems that adopt our design.

Step 1: Following a power failure, the first step is to obtain

the head and tail pointers of the log in NVRAM. These

pointers are part of the log structure. They allow systems to

correctly order the log entries. We use only one centralized

circular log for all transactions for all threads.

Step 2: The system recovery handler fetches log entries

from NVRAM and use the address, old value, and new

value fields to generate writes to NVRAM to the addresses

specified. The addresses are maintained via page table in

NVRAM. We identify which writes did not commit by

tracing back from the tail pointer. Log entries with mis-

matched values in NVRAM are considered non-committed.

The address stored with each entry corresponds to the

address of the persistent data member. Aside from the head

and tail pointers, we also use the torn bit to correctly order

these writes [19]. Log entries with the same txid and torn

bit are complete.

Step 3: The generated writes bypass the caches and go

directly to NVRAM. We use volatile caches, so their states

are reset and all generated writes on recovery are persistent.

Therefore, they can bypass the caches without issue.

Step 4: We update the head and tail pointers of the circular

log for each generated persistent write. After all updates

from the log are redone (or undone), the head and tail

pointers of the log point to entries to be invalidated.

V. EXPERIMENTAL SETUP

We evaluate our design by implementing it in Mc-

SimA+ [41], a Pin-based [42] cycle-level multi-core simula-

tor. We configure the simulator to model a multi-core out-of-

order processor with NVRAM DIMM described in Table II.

Our simulator also models additional memory traffic for

Processor Similar to Intel Core i7 / 22 nm
Cores 4 cores, 2.5GHz, 2 threads/core
IL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
DL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
L2 Cache 8MB, 16-way set-associative,

64B cache lines, 4.4ns latency
Memory Controller 64-/64-entry read/write queues

8GB, 8 banks, 2KB row
NVRAM DIMM 36ns row-buffer hit, 100/300ns

read/write row-buffer conflict [44].
Power and Energy Processor: 149W (peak)

NVRAM: row buffer read (write):
0.93 (1.02) pJ/bit, array
read (write): 2.47 (16.82) pJ/bit [44]

Table II
PROCESSOR AND MEMORY CONFIGURATIONS.

Memory
Name Footprint Description
Hash 256 MB Searches for a value in an
[29] open-chain hash table. Insert

if absent, remove if found.
RBTree 256 MB Searches for a value in a red-black
[13] tree. Insert if absent, remove if found
SPS 1 GB Random swaps between entries
[13] in a 1 GB vector of values.
BTree 256 MB Searches for a value in a B+ tree.
[45] Insert if absent, remove if found
SSCA2 16 MB A transactional implementation
[46] of SSCA 2.2, performing several

analyses of large, scale-free graph.

Table III
A LIST OF EVALUATED MICROBENCHMARKS.

logging and clwb instructions. We feed the performance sim-

ulation results into McPAT [43], a widely used architecture-

level power and area modeling tool, to estimate processor

dynamic energy consumption. We modify the McPAT pro-

cessor configuration to model our hardware modifications,

including the components added to support HWL and FWB.

We adopt phase-change memory parameters in the NVRAM

DIMM [44]. Because all of our performance numbers shown

in Section VI are relative, the same observations are valid

for different NVRAM latency and access energy. Our work

focuses on improving persistent memory access so we do

not evaluate DRAM access in our experiments.

We evaluate both microbenchmarks and real workloads

in our experiments. The microbenchmarks repeatedly up-

date persistent memory storing to different data structures

including hash table, red-black tree, array, B+tree, and

graph. These are data structures widely used in storage

systems [29]. Table III describes these benchmarks. Our

experiments use multiple versions of each benchmark and

vary the data type between integers and strings within them.

Data structures with integer elements pack less data (smaller

than a cache line) per element, whereas those with strings

require multiple cache lines per element. This allows us to
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explore complex structures used in real-world applications.

In our microbenchmarks, each transaction performs an in-

sert, delete, or swap operation. The number of transactions

is proportional to the data structure size, listed as “memory

footprint” in Table III. We compile these benchmarks in

native x86 and run them on the McSimA+ simulator. We

evaluate both singlethreaded and multithreaded versions of

each benchmark. In addition, we evaluate the set of real

workload benchmarks from the WHISPER persistent mem-

ory benchmark suite [11]. The benchmark suite incorporates

various workloads, such as key-value stores, in-memory

databases, and persistent data caching, which are likely to

benefit from future persistent memory techniques.

VI. RESULTS

We evaluate our design in terms of transaction throughput,

instruction per cycle (IPC), instruction count, NVRAM

traffic, and dynamic energy consumption. Our experiments

compare among the following cases.

• non-pers – This uses NVRAM as a working memory

without any data persistence or logging. This configu-

ration yields an ideal yet unachievable performance for

persistent memory systems [13].

• unsafe-base – This uses software logging without forced

cache write-backs. As such, it does not guarantee data

persistence (hence “unsafe”). Note that the dashed lines

in our figures show the best case achieved between either

redo or undo logging for that benchmark.

• redo-clwb and undo-clwb – Software redo and undo

logging, respectively. These invoke the clwb instruction

to force cache write-backs after persistent transactions.

• hw-rlog and hw-ulog – Hardware redo or undo logging

with no persistence guarantee (like in unsafe-base). These

show an extremely optimized performance of hardware

undo or redo logging [13].

• hwl – This design includes undo+redo logging from our

hardware logging (HWL) mechanism, but uses the clwb
instruction to force cache write-backs.

• fwb – This is the full implementation of our hardware

undo+redo logging design with both HWL and FWB.

A. Microbenchmark Results

We make the following major observations of our mi-

crobenchmark experiments and analyze the results. We eval-

uate benchmark configurations from single to eight threads.

The prefixes of these results correspond to one (-1t), two

(-2t), four (-4t), and eight (-8t) threads.

System Performance and Energy Consumption. Fig-

ure 6 and Figure 8 compare the transaction throughput and

memory dynamic energy of each design. We observe that

processor dynamic energy is not significantly altered by

different configurations. Therefore, we only show memory

dynamic energy in the figure. The figures illustrate that

hwl alone improves system throughput and dynamic energy

consumption, compared with software logging. Note that

our design supports undo+redo logging, while the evaluated

software logging mechanisms only support either undo or

redo logging, not both. Fwb yields higher throughput and

lower energy consumption: overall, it improves throughput

by 1.86× with one thread and 1.75× with eight threads,

compared with the better of redo-clwb and undo-clwb.

SSCA2 and BTree benchmarks generate less throughput and

energy improvement over software logging. This is because

SSCA2 and BTree use more complex data structures, where

the overhead of manipulating the data structures outweigh

that of the log structures. Figure 9 shows that our design

substantially reduces NVRAM writes.

The figures also show that unsafe-base, redo-clwb, and

undo-clwb significantly degrade throughput by up to 59%

and impose up to 62% memory energy overhead compared

with the ideal case non-pers. Our design brings system

throughput back up. Fwb achieves 1.86× throughput, with

only 6% processor-memory and 20% dynamic memory

energy overhead, respectively. Furthermore, our design’s

performance and energy benefits over software logging

remain as we increase the number of threads.

IPC and Instruction Count. We also study IPC number of

executed instructions, shown in Figure 7. Overall, hwl and

fwb significantly improve IPC over software logging. This

appears promising because the figure shows our hardware

logging design executes much fewer instructions. Compared

with non-pers, software logging imposes up to 2.5× the

number of instructions executed. Our design fwb only im-

poses a 30% instruction overhead.

Performance Sensitivity to Log Buffer Size. Section IV-C

discusses how the log buffer size is bounded by the data

persistence requirement. The log updates must arrive at

NVRAM before its corresponding working data updates.

This bound is ≤15 entries based on our processor configu-

ration. Indeed, larger log buffers better improve throughput

as we studied using the hash benchmark (Figure 11(a)).

An 8-entry log buffer improves system throughput by 10%;

our implementation with a 15-entry log buffer improves

throughput by 18%. Further increasing the log buffer size,

which may no longer guarantee data persistence, additionally

improves system throughput until reaching the NVRAM

write bandwidth limitation (64 entries based on our NVRAM

configuration). Note that the system throughput results

with 128 and 256 entries are generated assuming infinite

NVRAM write bandwidth. We also improve throughput over

baseline hardware logging hw-rlog and hw-ulog.

Relation Between FWB Frequency and Log Size. Sec-

tion IV-D discusses that the force write-back frequency

is determined by the NVRAM write bandwidth and log

size. With a given NVRAM write bandwidth, we study the

relation between the required FWB frequency and log size.

Figure 11(b) shows that we only need to perform forced
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Figure 6. Transaction throughput speedup (higher is better), normalized to unsafe-base.
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Figure 7. IPC speedup (higher is better) and instruction count (lower is better), normalized to unsafe-base.
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Figure 8. Dynamic energy reduction (higher is better), normalized to unsafe-base (dashed line).

write-backs every three million cycles if we have a 4MB

log. As a result, the fwb tag scanning only introduces 3.6%

performance overhead with our 8MB cache.

B. WHISPER Results
Compared with microbenchmarks, we observe even more

promising performance and energy improvements in real

persistent memory workloads in the WHISPER benchmark

suite with large data sets (Figure 10). Among the WHIS-

PER benchmarks, ctree and hashmap benchmarks accu-

rately correspond to and reflect the results achieved in

our microbenchmarks due to their similarities. Although

the magnitude of improvement vary, our design leads to

much higher performance, lower energy, and lower NVRAM

traffic than our baselines. Compared with redo-clwb and

undo-clwb, our design significantly reduces the dynamic

memory energy consumption of tpcc and ycsb due to the

high write intensity in these workloads. Overall, our design

(fwb) achieves up to 2.7× the throughput of the best case

in redo-clwb and undo-clwb. This is also within 73% of

non-pers throughput of the same benchmarks. In addition,

our design achieves up to a 2.43× reduction in dynamic

memory over the baselines.
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Figure 9. Memory write traffic reduction (higher is better), normalized to unsafe-base (dashed line).
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Figure 10. WHISPER benchmark results, including IPC, dynamic memory energy consumption, transaction throughput, and NVRAM write traffic,
normalized to unsafe-base (the dashed line).
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Figure 11. Sensitivity studies of (a) system throughput with varying log
buffer sizes and (b) cache fwb frequency with various NVRAM log sizes.

VII. RELATED WORK

Compared to previous architecture support for persistent

memory systems, our design further relaxes ordering con-

straints on caches with less hardware cost.2

Hardware support for logging. Several recent studies

proposed hardware support for log-based persistent mem-

ory design. Lu et al. proposes custom hardware logging

mechanisms and multi-versioning caches to reduce intra- and

inter-transaction dependencies [24]. However, they require

both large-scale changes to the cache hierarchy and cache

multi-versioning support. Kolli et al. proposes a delegated

persist ordering [15] that substantially relaxes persistence

ordering constraints by leveraging hardware support and

cache coherence. However, the design relies on snoop-based

coherence and a dedicated persistent memory controller.

Instead, our design is flexible because it directly leverages

the information already in the baseline cache hierarchy.

ATOM [35] and DudeTM [47] only implement either undo

2Volatile TM supports concurrency but does not guarantee persistence in
memory.

or redo logging. As a result, the studies do not provide

the level of relaxed ordering offered by our design. In

addition, DudeTM [47] also relies on a shadow memory

which can incur substantial memory access cost. Doshi

et al. uses redo logging for data recoverability with a

backend controller [48]. The backend controller reads log

entries from the log in memory and updates data in-place.

However, this design can unnecessarily saturate the memory

read bandwidth needed for critical read operations. Also, it

requires a separate victim cache to protect from dirty cache

blocks. Instead, our design directly uses dirty cache bits to

enforce persistence.

Hardware support for persistent memory. Recent studies

also propose general hardware mechanisms for persistent

memory with or without logging. Recent works propose that

caches may be implemented in software [49], or an addi-

tional non-volatile cache integrated in the processor [50],

[13] to maintain persistence. However, doing so can double

the memory footprint for persistent memory operations.

Other works [31], [26], [51] optimize the memory controller

to improve performance by distinguishing logging and data

updates. Epoch barrier [29], [16], [52] is proposed to relax

the ordering constraints of persistent memory by allowing

coarse-grained transaction ordering. However, epoch barriers

incur non-trivial overhead to the cache hierarchy. Further-

more, system performance can be sub-optimal with small

epoch sizes, which is observed in many persistent mem-

ory workloads [11]. Our design uses lightweight hardware

changes on existing processor designs without expensive

non-volatile on-chip transaction buffering components.

347



Persistent memory design in software. Previous works,

such as Mnemosyne [19] and REWIND [53], utilize write-

ahead logging implemented in software. These rely on

instructions, such as clflush, clwb, and pcommit, to

achieve persistency and enforce log-data ordering in their

critical path. Our design does not require these persistent

instructions that we’ve shown can clog the pipeline and

are often inefficient or unnecessary. JUSTDO [54] logging

also relies on these instructions (for manual flushing by

the programmer). Additionally, these works’ programming

models all falter because Intel’s pcommit instruction is now

deprecated. Our design works on legacy code and does not

have strict functionality requirements on the programming

model. This makes it immune to relying on instructions or

software functions that become deprecated.

VIII. CONCLUSIONS

We proposed a hardware logging scheme that allows

the caches to perform cache line updates and write-backs

without non-volatile buffers or caches in the processor.

These mechanisms make up a complexity-effective design

that excels over traditional software logging for persistent

memory. Our evaluation shows that our design significantly

increases performance while reducing memory traffic and

energy.
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