
Maximizing Efficiency By Trading Storage for Computation†

Ian F. Adams Darrell D. E. Long
University of California, Santa Cruz

Ethan L. Miller

Shankar Pasupathy
NetApp

Mark W. Storer
Pergamum Systems

Abstract
Traditionally, computing has meant calculating results

and then storing those results for later use. Unfortu-
nately, committing large volumes of rarely used data to
storage wastes space and energy, making it a very expen-
sive strategy. Cloud computing, with its readily available
and flexibly allocatable computing resources, suggests
an alternative: storing the provenance data, and means
to recomputing results as needed.
While computation and storage are equivalent, finding

the balance between the two that maximizes efficiency is
difficult. One of the fundamental challenges of this is-
sue is rooted in the knowledge gap separating the users
and the cloud administrators—neither has a completely
informed view. Users have a semantic understanding of
their data, while administrators have an understanding
of the cloud’s underlying structure. We detail the user
knowledge and system knowledge needed to construct
a comprehensive cost model for analyzing the trade-off
between storing a result and regenerating a result, allow-
ing users and administrators to make an informed cost-
benefit analysis.

1 Introduction

In traditional computing, storage is used to hold the re-
sults of computation. In this simple model where the
final computational state is preserved, results are sim-
ply read from storage each time they are needed. Cloud
computing, with its promise of readily available, flexi-
bly allocated computational resources, calls into question
the relationship between processing and storage. Instead
of storing a result, it may be more efficient to store the

†Supported in part by the Petascale Data Storage Institute under De-
partment of Energy award DE-FC02-06ER25768 and by the industrial
sponsors of the Storage Systems Research Center.

provenance data and inputs to a process along with the
means to recalculate a result if it is ever needed again.
For example, climate models use relatively small in-

puts such as sensor data and historic records, but gener-
ate enormous amounts of output data. When the model
becomes obsolete, these old results are often accessed
very infrequently. As an alternative to using costly stor-
age for such rarely used data, it may be cheaper to store
the provenance information and recomputation means
needed to regenerate the data. In this way, storage costs
are reduced, while still preserving access to the result
should the need arise. A more common application of
this tradeoff is already realized in video-on-demand ser-
vices. Rather than store every possible resolution and
format, video providers store only the highest-resolution
video and utilize a cloud-based service to transcode on-
demand to the desired output format [13].
Recomputation as a replacement for storage fits well

into the holistic model of computing described by the
cloud architecture [3]. With its dynamically scalable,
and virtualized architecture, cloud computing aims to ab-
stract away the details of underlying infrastructure. In
both public and private clouds, the user is encouraged to
think in terms of services, not structure.
While the decision between storage and computing su-

perficially appears to be a simple cost-benefit tradeoff,
there are several issues to consider. First, we must ex-
amine what can actually be stored and or feasibly com-
puted. Is the goal to recompute an exact result, or merely
an acceptable one? Are there legal requirements? Se-
curity issues? Second, a system that aims to enable re-
computation will need additional metadata and prove-
nance facilities in order to ensure that re-computation
methods are known, and that result regenerations are
successful. Third, we must understand the factors that
determine when it is more efficient to recompute a re-

sult, as opposed to storing it, such as the likelihood of
reuse and the potential penalties if the data is unavail-
able when needed. Because this includes both user and
system knowledge, understanding these factors is an im-
portant step in ensuring that the decision maker has all of
the information required to make an informed decision.
Though complicated, the decision is in essence a com-

parison of two costs: The cost of storage (Cs) and the
cost of recomputation (Cr).

Cs = cost per bit×bits stored
Cr = (computation cost+miss penalty)× likelihood of reuse

The cost of storage—assuming a linear cost model—
is straightforward; it is simply the cost per bit multi-
plied by the number stored and the duration they must be
stored for. The cost of recomputation is more complex
as it involves more factors, such as the cost of adapt-
ing a process to a new cloud provider. Similarly, the
miss penalty may be difficult to estimate accurately, and
is highly application-specific. Finally, the likelihood of
reuse can be very difficult to determine, yet its value is
perhaps the most critical to determining the expected cost
to recompute a result.
As an example, consider an organization using Ama-

zon’s AWS cloud services at current prices that might
need access to a 5 TB data set over 10 years. If the data is
unavailable when needed they lose $20,000. To store for
10 years will cost $90,000 and regenerating the data re-
quires 5 days and 100 machines costing a total of $5,000.
With these numbers alone it is unclear whether it is bet-
ter to store persistently, or recompute at a later date. With
recomputation, even a 50% chance per year of reuse may
yield net savings provided there is sufficient lead time
to regenerate results, while a lower chance of reuse may
still dictate we store persistently if there insufficient time
to regenerate the data before its needed. Furthermore,
market factors may significantly raise or lower costs in
the long term. These are just a few of the factors that
should be examined when considering such a tradeoff.
This leads to a significantly more complicated cost-

benefit analysis than would be assumed at first glance.
The rest of the discussion revolves around issues that are
relevant to understanding the tradeoff between storage
and computation. First, we examine the requirements for
storing the components needed to recompute results. We
next discuss the factors involved in a cost-benefit model
comparing storage with computation. We end with re-
lated works discussing other views of costs in cloud com-
puting, as well potentially beneficial technologies that
could aid in our cost-benefit analysis.

Figure 1: The three components involved with generat-
ing computed data: one or more inputs, a process that
transforms those inputs, and the ensuing result.

2 Discussion

The basic relationship governing results computation can
be expressed with a simple, three entity model. As Fig-
ure 1 illustrates, the computation is rooted in one or more
inputs, which can, in turn, be the result of previous com-
putation. These inputs are acted upon, and transformed
by a process. The output of that process is a result.
In a traditional model of computing, this result is

stored for future use. In contrast, cloud computing’s
holistic view of storage and computation is well suited to
intelligently choosing which results to store and which
to recompute as needed. The efficiency gains of this ap-
proach can be likened to file compression, which trades
some computation costs for storage efficiency.

2.1 Requirements
As a first step in determining when it is desirable to re-
compute results as opposed to storing them, it is impor-
tant to understand the conditions that make recomputa-
tion possible. A primary concern is the integrity con-
straint of the result. If there is a strict integrity con-
straint, then the goal is to always regenerate the same
result. Some results, however, may only carry loose in-
tegrity constraints, in which a merely “acceptable” re-
sult is required. For example, a simulation process might
generate different output each time it is run, but each of
the different results is admissible.
If inputs are being stored with an eye towards regen-

erating results, then the corresponding process is also re-
quired. This is especially true for results with a strict in-
tegrity constraint; for loose integrity results, an alternate,
slightly different, process might suffice.
If the process is to be stored and reused, there are a

number of requirements which must be met. First, the
process must be known, and it must be describable in
some manner that renders it reusable. Second, for strict
integrity, the process must be deterministic. This does
not, however, preclude the storage of pseudo-random
processes, so long as all the necessary input seed values
have also been stored. Third, the process must be re-
executable over the desired lifetime of the result, a par-

Result Odds and frequency of reuse
Specific Reuse lead time

Rebuild time
Miss penalty

Marginal Storage
Costs Network

Computation
Trends Technology trends

Market trends
Volatility and forecast confidence

Table 1: Summation of factors to include in a cost benefit
model covering the computation and storage tradeoff.

ticularly difficult challenge for long-term scenarios [6].
Cloud computing increases the challenge, since differ-
ent clouds may have different computation models, and
even a single cloud’s engine may change over time. For
example, Amazon’s EC2 service offers root access on
machines, while Google’s App Engine imposes a custom
version of Python, and database restrictions [15]. Finally,
even if the result is not stored, but rather recalculated,
there is pertinent metadata that should still be considered
for storage. In a strict integrity scenario, a hash of the
result is useful for confirming successful computation.
Additionally, a measure of time or resources required to
rebuild can assist in scheduling reconstruction.

2.2 Cost Analysis Model
Once it has been determined that an end product can be
recomputed, a cost model is invaluable in choosing the
most efficient strategy for dealing with computed results.
Such a cost model has three primary facets, summarized
in Table 1. First, there are several result specific as-
pects to consider. Second, marginal costs describe how
much an additional unit of cloud service would cost at
the present moment. Third, the cost trends attempt to
predict where the costs might be at a point in the future.
One of the key challenges in balancing storage and

computation is deciding who makes the decision regard-
ing what is to be stored and what is to be recomputed;
both end user and system knowledge are required for an
informed decision. For example, if the cloud provider
is making the decision in order to maximize their sys-
tem efficiency, they may not fully understand the miss
penalty associated with a time sensitive result. In con-
trast, a user or application-centric decision may lack sig-
nificant infrastructure knowledge. To this end, a fully in-
formed decision will involve knowledge from both par-
ties. The answer may lie in the form of user generated

metadata associated with a result, and used in conjunc-
tion with a cloud provider’s cost model.

2.2.1 Result Specific Issues

There are a number of factors, intrinsic to the result itself,
that must be taken into account when choosing wether
to store or recompute. These result-specific issues can
be divided into low-level, and high-level factors. Low-
level factors describe a system level view of how results
are created, while high-level factors are based on the the
meaning of the result, and are often highly subjective.
Provenance aware systems track a number of low-level

factors by constructing dependency graphs to capture the
relationship between inputs, processes and results. These
graphs can be extended to record factors such as resource
requirements and hashes of computed results. By record-
ing resource requirements, it is possible to estimate how
much lead time is required to recalculate a result. Hashes
can be used to confirm reconstruction. As dependency
chains grow longer, such data is increasingly important;
the longer the chain of data products that must be regen-
erated, the greater the inclination to store at least some
of the key intermediate values.
There are a number of high-level factors that require

either an application or user level understanding of a re-
sult. First, the likelihood and frequency that a result will
be used at a later time is highly variable. Files are not
accessed uniformly; some files are very “hot”, though
the vast majority of storage is rarely accessed [9]. Sec-
ond, there is a potential concern over the time needed
to recompute results—while retrieved results can be ac-
cessed nearly immediately, recomputing results can be
time-intensive, particularly if inputs earlier in the depen-
dency graph must be recomputed as well. Moreover,
computation time can be greatly effected by the amount
of parallelism available in the cloud and the degree to
which the process can be parallelized to take advantage
of it. The miss penalty is also a critical factor: does it
incur a small financial cost or is the miss penalty very
high? If miss penalties are high, a strategy that provides
the lowest possible access time will likely be optimal.
Miss penalties are especially important to consider,

since overbooking is a standard practice in many service-
oriented businesses. One way that miss penalties could
be mitigated is with the use of insurance: a service
contract with a cloud provider could include a standard
SLA (Service Level Agreement), detailing assured levels
of service, along with an insurance clause offeringmone-
tary compensation to the user if the provider fails to pro-
vide service up to the SLA. Cloud providers like Ama-
zon’s EC2 [1] and RackSpace [11] already provide basic

SLA’s to compensate users for lost cycles and downtime.
However, this must be balanced against the miss penalty
from the user’s perspective; a small monetary concession
may be sufficient compensation for a few missed frames
in a video playback, but not for a loss of life.
Finally, different data has different security needs.

Storing the information needed to regenerate a result may
introduce new avenues for malicious exploits. While
a cloud administrator can measure the risks associated
with different strategies, they cannot always measure the
impact of a security breach without an understanding of
the result itself. Similarly, while public clouds are often
sold as abstract computing resources, seemingly banal
details—such as where the infrastructure is located, and
who owns the hardware—can have a direct impact on le-
gal jurisdiction and liability [5]. Currently, some cloud
computing solutions, such as Amazon’sWeb Service, ex-
plicitly state in their user policies that, while they will try
to keep data reliably accessible and secure, they are not
responsible for leaked or lost data, and it is the user’s re-
sponsibility to provide adequate security and backup [2].

2.2.2 Marginal Costs

There are three primary marginal utility costs to consider
when maximizing efficiency: storage, computation and
network costs. Each measures the cost of one additional
unit of service. In anything other than a simple linear
cost model where X costsY and 10X costs 10Y , marginal
costs become the relevant figure. While underlying costs
such as energy and floor space could be specifically item-
ized, we assume that the marginal costs of storage, com-
putation and transport can be formulated to encompass
both capital and operating expenditures.
The first of the three marginal costs is storage, which,

in a cloud environment, can be measured in dollars per
unit per year. The second direct cost, network, describes
the costs to transport and move data within the cloud.
This may be measured using both the amount of data
moved, as well as the speed at which the data is moved.
The third cost, computation, which may be highly de-
pendent on the process itself. For example, depending
on how computation is billed, the parallelism of the pro-
cess may affect the cost to the user.

2.2.3 Forecasts

While marginal costs describe the financial state of the
cloud at the present, a number of indirect factors describe
potential future state. For example, advances in storage
capacity and processing capacity occur at different rates;
Kryder’s law states that hard drive areal density doubles

Year
1973 1978 1983 1988 1993 1998 2003 2008

$
pe

r M
B

0

10

100

1000

(a) Price per megabyte of commercially available hard drives.

Year
1973 1978 1983 1988 1993 1998 2003 2008

No
m

in
al

 C
en

ts
 p

er
 K

W
 h

ou
r

0

2

4

6

8

10

12

14

Residential
Commercial
Industrial

(b) Nominal price of energy for three markets.

Figure 2: Predicting costs can be difficult; some fac-
tors such as price per megabyte of hard drive storage are
fairly predictable, others such as energy prices are more
volatile.

annually [14], while Moore’s law states that the number
of transistors that can be placed inexpensively on an in-
tegrated circuit doubles approximately every two years.
Further, market volatility can also play into a cost ef-
ficiency model, making it difficult to predict the future
state of a volatile market. As Figure 2 shows, while
the price of energy has trended upwards, it has not fol-
lowed as predictable a growth rate as hard drive costs [4].
Similarly, while DRAM prices have trended lower, mar-
ket forces such as supply and demand, and extra-market
forces such as collusion and price fixing, conspire against
prediction confidence [10]. Furthering the difficulty of
prediction are technological plateaus and disruptive tech-
nologies.

3 Related Work

The equivalence of storage and computation is well es-
tablished, and several applications utilize storage as a re-
placement for repeated computation. For example, dy-
namic programming techniques exploit storage to solve

problems that exhibit overlapping subproblems. More
concretely, some cryptanalysis techniques utilize storage
by precomputing and storing tables to aid in key recov-
ery [8]. The larger the table size, the less time is spent
on computation during the key search. Cloud comput-
ing allows such a space-time trade off to be done on a
larger scale, and as such demands a unique analysis to
understand its potential benefits and detriments.
There have already been a few general analyses of the

potential applications, concerns and costs in cloud com-
puting. Balani et al. [3] examine many of the issues in
cloud computing. In contrast to our discussion, however,
their focus is primarily on the direct costs and challenges
of computation in a cloud—such as adaptation of pro-
grams to the cloud —and they do not examine the poten-
tial of trading computation for storage.
Gray examined economic issues [7], but focused more

on the physical transmission and coordination costs in-
volved in computation. Gray looked at cost and argued
that “. . . computations should be near the data”, and stat-
ing that in computation as a utility, the key factor is the
amount of processing done per bit. Again, however, the
potential tradeoffs in storage and computation are not ex-
plicitly examined.
Storage systems with an awareness of how data is

generated, such as Provenance Aware Storage Sys-
tems (PASS) [12], provide a number of low level facili-
ties needed to trade computation for storage space. PASS
preserves the provenance of data by recording the inputs,
commands, and processes used to create a file. By ex-
tending this information with additional metadata—such
as a hash of the result, and the time and resources needed
to regenerate the result—systems such as PASS can pro-
vide much of the underlying support for analyzing the
feasibility and cost of re-computation.

4 Conclusions

The presence of readily available, and easily allocated
computational utility promised by cloud computing calls
into the question the traditional role of storage as a way to
preserve past computations. Instead of storing a result, it
may be most cost efficient to store the inputs, processes
and provenance data needed to regenerate a result, and
then regenerate results on-demand. In essence, computa-
tion can be used in place of storage. If data is unlikely to
be reused, as is often the case, this approach may yield
significant cost savings.
Deciding when to store a result or when to rely instead

on computation comes down to a cost-benefit analysis.
We have discussed the constraints and requirements for

storing the input, the process, and the results. Further-
more, we presented the factors involved in a cost model
covering three key areas. First, the semantic meaning of
the data, such as miss penalties, and the odds and fre-
quency of reuse. Second, marginal costs describing the
costs for additional units of cloud utility. Third, forecast-
ing to predict where prices will be in the future. These
factors span the knowledge of both users, and cloud ad-
ministrators, motivating the need for methods of interac-
tion between the two. By combining information from
both users and cloud administrators, users can make in-
formed decisions between storage and recomputation to
minimize costs.

References

[1] Amazon. Amazon EC2 service level agreement. http:
//aws.amazon.com/ec2-sla, Oct. 2008.

[2] Amazon. AWS customer agreement. http://aws.
amazon.com/agreement/, Apr. 2009.

[3] R. Balani et al. Above the clouds: A berkeley view of
cloud computing. Technical Report UCB/EECS-2009-
28, UCB, Feb. 2009.

[4] Energy Information Administration. Monthly energy re-
view January 2009. http://www.eia.doe.gov/
emeu/mer/contents.html, Jan. 2009.

[5] Fort Worth Star-Telegram. FBI raids Dallas computer
firm. http://www.star-telegram.com, Apr.
2009.

[6] H. M. Gladney and R. A. Lorie. Trustworthy 100-year
digital objects: Durable encoding for when it’s too late
to ask. ACM Transactions on Information Systems, July
2005.

[7] J. Gray. Distributed computing economics. ACM Queue,
May 2008.

[8] M. Hellman. A cryptanalytic time-memory trade-off. In
IEEE Transactions on Information Theory, volume 26,
July 1980.

[9] A. W. Leung et al. Measurement and analysis of large-
scale network file system workloads. In USENIX 2008
Technical Conference.

[10] S. K. Moore. Price fixing in the memory market. IEEE
Spectrum, Dec. 2004.

[11] Mosso. Rackspace SLA. http://www.mosso.
com/downloads/sla_cloud_servers.pdf,
Mar. 2009.

[12] K.-K. Muniswamy-Reddy et al. Provenance-aware stor-
age systems. In USENIX 2006 Technical Conference.

[13] L. Rao. HD cloud puts video formatting in the cloud.
http://www.techcrunch.com/2009/04/14/
hd-cloud-puts-video-formatting-in-the-cloud/,
Apr. 2009.

[14] C. Walter. Kryder’s law. Scientific American, July 2005.
[15] P. Wayner. Cloud versus cloud: A guided tour of Ama-

zon, Google, AppNexus, and GoGrid. http://www.
infoworld.com/print/37122, July 2008.

