
Optimizing Systems for Byte-Addressable NVM by Reducing Bit Flipping

Daniel Bittman
UC Santa Cruz

Peter Alvaro
UC Santa Cruz

Darrell D. E. Long
UC Santa Cruz

Ethan L. Miller
UC Santa Cruz
Pure Storage

Abstract
New byte-addressable non-volatile memory (BNVM) tech-
nologies such as phase change memory (PCM) enable the
construction of systems with large persistent memories, im-
proving reliability and potentially reducing power consump-
tion. However, BNVM technologies only support a limited
number of lifetime writes per cell and consume most of their
power when flipping a bit’s state during a write; thus, PCM
controllers only rewrite a cell’s contents when the cell’s value
has changed. Prior research has assumed that reducing the
number of words written is a good proxy for reducing the
number of bits modified, but a recent study has suggested
that this assumption may not be valid. Our research con-
firms that approaches with the fewest writes often have more
bit flips than those optimized to reduce bit flipping.

To test the effectiveness of bit flip reduction, we built a
framework that uses the number of bits flipped over time
as the measure of “goodness” and modified a cycle-accurate
simulator to count bits flipped during program execution. We
implemented several modifications to common data struc-
tures designed to reduce power consumption and increase
memory lifetime by reducing the number of bits modified
by operations on several data structures: linked lists, hash ta-
bles, and red-black trees. We were able to reduce the number
of bits flipped by up to 3.56⇥ over standard implementations
of the same data structures with negligible overhead. We
measured the number of bits flipped by memory allocation
and stack frame saves and found that careful data placement
in the stack can reduce bit flips significantly. These changes
require no hardware modifications and neither significantly
reduce performance nor increase code complexity, making
them attractive for designing systems optimized for BNVM.

1 Introduction

As byte-addressable non-volatile memories (BNVMs) be-
come common [15, 18, 24], it is increasingly important that
systems are optimized to leverage their strengths and avoid

stressing their weaknesses. Historically, such optimizations
have included reducing the number of writes performed, ei-
ther by designing data structures that require fewer writes
or by using hardware techniques such as caching to reduce
writes. However, it is the number of bits flipped that matter
most for BNVMs such as phase-change memory (PCM), not
the number of words written.

BNVMs such as PCM suffer from two problems caused by
flipping bits: energy usage and cell wear-out. As these mem-
ory technologies are adopted into longer-term storage solu-
tions and battery powered mobile and IoT devices, their costs
become dominated by physical replacement from wear-out
and energy use respectively, so increasing lifetime and drop-
ping power consumption are vital optimizations for BNVM.
Flipping a bit in a PCM consumes 15.7�22.5⇥ more power
than reading a bit or “writing” a bit that does not actually
change [13, 14, 24, 29]. Thus, many controllers optimize by
only flipping bits when the value being written to a cell dif-
fers from the old value [39]. While this approach saves some
energy, it cannot eliminate flips required by software to up-
date modified data structures. An equally important concern
is that PCM has limited endurance: cells can only be writ-
ten a limited number of times before they “wear out”. Un-
like flash, however, PCM cells are written individually, so
it is possible (and even likely) that some cells will be writ-
ten more than others during a given period because of im-
balances in values written by software. Reducing bit flips,
an optimization goal that has yet to be sufficiently explored,
can thus both save energy and extend the life of BNVM.

Previously, we showed that small changes in data struc-
tures can have large impacts in the bit flips required to com-
plete a given set of data structure modifications [4]. While it
is possible to reduce bits flipped with changes to hardware,
we can gain more by optimizing compiler constructs and
choosing data structures to take advantage of semantic infor-
mation that is not available at other layers of the stack; it is
critical we design our data structures with this in mind. Suc-
cessful BNVM-optimized systems will need to target new
optimizations for BNVM, including bit flip reduction.

USENIX Association 17th USENIX Conference on File and Storage Technologies 17

We implemented three such data structures and evaluated
the impact on the number of writes and bit flips, demonstrat-
ing the effectiveness of designing data structures to minimize
bit flips. These simple changes reduce bit flips by as much
as 3.56⇥, and therefore will reduce power consumption and
extend lifetime by a proportional amount, with no need to
modify the hardware in any way. Our contributions are:

• Implementation of bit flip counting in a full cycle-accurate
simulation environment to study bit flip behavior.

• Empirical evidence that reducing memory writes may not
reduce bit flips proportionally.

• Measurements of the number of bit flips required by op-
erations such as memory allocation and stack frame use,
and suggestions for reducing the bit flips they require.

• Modification of three data structures (linked lists, hash ta-
bles, red-black trees) to reduce bit flips and evaluation of
the effectiveness of the techniques.

The paper is organized as follows. Section 2 gives back-
ground demonstrating how bit flips impact power consump-
tion and BNVM lifetime. Section 3 discusses some tech-
niques for reducing bit flips in software, which are evaluated
for bit flips (Section 4) and performance (Section 5). Sec-
tion 6 discusses the results, followed by comments on future
work (Section 7) and a conclusion (Section 8).

2 BNVM and Bit Flips

Non-volatile memory technologies [6] such as phase-change
memory (PCM) [24], resistive RAM (RRAM, or memris-
tors) [33, 35], Ferroelectric RAM (FeRAM) [15], and spin-
torque transfer RAM (STT-RAM) [22], among others, have
the potential to fundamentally change the design of devices,
operating systems, and applications. Although these tech-
nologies are starting to make their way into consumer de-
vices [18] and embedded systems [33], their full poten-
tial will be seen when they replace or coexist with DRAM
as byte-addressable non-volatile memory (BNVM). Such a
memory hierarchy will allow the processor, and thus appli-
cations, to use load and store instructions to update persis-
tent state, bypassing the high-latency I/O operations of the
OS. However, power consumption, especially for write op-
erations, and device lifetime are more serious concerns for
these technologies than for existing memory technologies.

2.1 Optimizing for Memory Technologies
Data structures should be designed to exploit the advan-
tages and mitigate the disadvantages of the technologies on
which they are deployed. For example, data structures for
disks are block-oriented and favor sequential access, while
those designed for flash reduce writes, especially random
writes, often by trading them for an increase in random

reads [10]. Prior data structures and programming mod-
els for NVM [9, 11, 16, 25, 36, 38] have typically exploited
its byte-addressability while mitigating the relatively slow
access times of most BNVM technologies. However, in
the case of technologies such as PCM or RRAM, exist-
ing research ignores two critical characteristics: asymmet-
ric read/write power usage and the ability to avoid rewriting
individual bits that are unchanged by a write [6, 39].

For example, writes to PCM are done by melting a cell’s
worth of material with a relatively high current and cooling it
at two different rates, leaving the material in either an amor-
phous or crystalline phase [30]. These two phases have dif-
ferent electrical resistance, each corresponding to a bit value
of zero or one. The writing process takes much more energy
than reading the phase of the cell, which is done by sensing
the cell’s resistance with a relatively low current. To save
energy, the PCM controller can avoid writing to a cell during
a write if it already contains the desired value [39], meaning
that the major component of the power required by a write
is proportional not to the number of bits (or words) written,
but rather to the number of bits actually flipped by the write.
Based on this observation, we should design data structures
for BNVM to minimize the number of bits flipped as the
structures are modified and accessed rather than simply re-
ducing the number of writes, as is more commonly done.

2.2 Power Consumption of PCM and DRAM
While our research applies to any BNVM technology in
which writes are expensive, we focus on PCM because its
power consumption figures are more readily available. Fig-
ure 1 shows the estimated power consumption of 1 GB of
DRAM and PCM as a function of bits flipped per second, us-
ing power measurements from prior studies of memory sys-
tems [4, 7, 13, 14, 24, 29]. The number of writes to DRAM
has little effect on overall power consumption since the entire
DRAM must be periodically refreshed (read and rewritten);
refresh dominates, resulting in a high power requirement re-
gardless of the number of writes. In contrast, PCM requires
no “maintenance” power, but needs a great deal more energy
to write an individual bit (~50 pJ/b [2]) compared to the low
overhead for writing a DRAM page (~1 pJ/b [24]). The re-
sult is that power use for DRAM is largely proportional to
memory size, while power consumption for PCM is largely
proportional to cell change rate. The exact position of the
cross-over point in Figure 1 will be narrowed down as these
devices become more common; many features of these de-
vices, including asymmetric write-zero and write-one costs,
increased density of PCM over DRAM, and decreasing fea-
ture sizes, will affect the trade-off point over time.

Figure 1 demonstrates the need for data structures for
PCM to minimize cell writes. Because the memory con-
troller can minimize the cost of “writing” a memory cell with
the same value it already contains, the primary concern for

18 17th USENIX Conference on File and Storage Technologies USENIX Association

�.� �.� �.� �.� �.�
Bit Flips per Second ⇥���

�.��

�.��

�.��

Po
w

er
(W

at
ts

)

DRAM
PCM

Figure 1: Power use as a function of flips per second [4].

data structures in PCM is reducing the number of bit flips,
which the memory controller cannot easily eliminate.

Power consumption is particularly concerning for battery-
operated Internet of Things (IoT) devices, which may be-
come a significant consumer of BNVM technologies to
facilitate fast power-up and reduce idle power consump-
tion [20, 21]. Devices that collect large amounts of data and
write frequently to BNVM may find power usage increasing
depending on access patterns. Thus, IoT devices may benefit
significantly from bit-flip-aware systems and data structures.

2.3 Wear-out

Another significant advantage to avoiding bit flips is reduc-
ing memory cell wear-out. BNVM technologies typically
have a maximum number of lifetime writes, and fewer writes
means a longer lifetime. However, by avoiding unneces-
sary overwrites, the controller would introduce uneven wear
within BNVM words where some of the bits flip more fre-
quently than others due to biases of certain writes. For ex-
ample, pointer overwrites may only alter the low-order bits,
except for the few that are zero because of structure align-
ment in memory, if the pointers are to nearby regions. Thus,
the middle bits in a 64-bit word may wear out faster than the
lowest and highest bits. While reducing bit-flips increases
the average lifetime of the cells in a word, it has the potential
to exacerbate the uneven wear problem since such techniques
might increase the biases of certain writes.

Fortunately, we can take advantage of existing research in
wear-leveling for BNVM that allows the controller to spread
out the cell updates within a given word. While a full remap-
ping layer similar to a flash translation layer is infeasible for
BNVM—the overhead would be too high—hardware tech-
niques such as row shifting [40], content-aware bit shuf-
fling [17], and start-gap wear leveling [28] may be able to
mitigate biased write patterns with low overhead. This would
allow BNVM to leverage bit flip reduction to reduce wear
even if the result is that some bits are flipped more frequently
than others. These techniques, implemented at the memory
controller level, can work in tandem with the techniques de-
scribed in this paper since they benefit bit flip reduction and

can distribute “hot” bits across a word, mitigating the biased
write patterns bit flip reduction techniques may introduce.

2.4 Reducing Impact of Bit Flips in BNVM
Although bit flips in BNVM have been studied previously,
much of that work has focused on hardware encoding, which
re-encodes cache lines to reduce bit flips, but re-encoding has
limited efficacy [8, 19, 32] because it must also store infor-
mation on which encoding was used. While hardware tech-
niques are worth exploring, software techniques to reduce bit
flips can be more effective because they can leverage seman-
tic knowledge available in the software but not visible in the
memory controller’s limited view of single cache lines.

Chen et al. [7] evaluate data structures on BNVM and ar-
gue that reducing bit flips is workload dependent and diffi-
cult to reason about, so we should strive to reduce writes be-
cause writes are approximately proportional to bit flips. We
found that this is often not the case—our prior experiments
revealed that bit flips were often not proportional to writes,
and we were able to examine bit flips and optimize for them
in an example data structure [4]. These findings are further
corroborated by our experiments in Section 4.

Since bit flips directly affect power consumption and wear,
we can study three separate aspects for bit flip reduction:

• Data structure design: Since data organization plays a
large role in the writes that make it to memory, we de-
signed new data structures built around the idea of pointer
distance [34] instead of storing pointers directly. While
data writes themselves significantly affect bit flips, these
writes are often unavoidable (since the data must be writ-
ten), while data structure writes are more easily optimized
(as we see in existing BNVM data structure research).
Furthermore, data structures often require a significant
number of updates over time, while data is often written
once (since we can reduce writes by updating pointers in-
stead of moving data). Thus the overall proportion of bit
flips caused by data writes may drop over time as data
structures are updated.

• Effects of program operation: A common source of
writes is the stack, where return addresses, saved regis-
ters, and register spills are written. Understanding how
these writes affect bit flips plays a critical role in recom-
mendations for bit flip reduction for system designers.

• Effects of caching layers: Since writes must first go
through the cache, it is vital to understand how different
caching layers and cache sizes affect bit flips in memory.
Complicating matters is the unique consistency challenges
of BNVM [9,11,36], wherein programs often flush cache-
lines to main memory more frequently than they other-
wise would, use write-through caching, or more com-
plex, hardware-supported cache flushing protocols. These
questions are evaluated in Section 4.6.

USENIX Association 17th USENIX Conference on File and Storage Technologies 19

3 Reducing Bit Flips in Software

By reducing bit flips in software, we can effect improve-
ments in BNVM lifetime and power use without the need
for hardware changes. To build data structures to reduce bit
flips (Sections 3.1–3.3), we propose several optimizations to
pointer storage along with additional optimizations for indi-
cating occupancy. For stack writes, we propose changes to
compilers to spill registers such that they avoid writing dif-
ferent registers to the same place in the stack (Section 3.4).

3.1 XOR Linked Lists

XOR linked lists [34] are a memory-efficient doubly-linked
list design where, instead of storing a previous and next node
pointer, each node stores only a siblings value that is the
XOR between the previous and next node. If the previous
node is at address p and the next node is at address n, the
node stores siblings = p� n. This scheme cuts the number
of stored pointers per node in half while still allowing bi-
directional traversal of the list—having pointers to two adja-
cent nodes is sufficient to traverse both directions. However,
an XOR linked list has disadvantages; it does not allow O(1)
removal of a node with just a single pointer to that node, as
a node’s siblings cannot be determined from the node alone,
and it increases code complexity by requiring XOR opera-
tions before pointers are dereferenced.

When they were proposed, XOR linked lists had little ad-
vantage over doubly linked lists beyond a modest memory
saving. However, with the need for fewer bit flips on BNVM,
they gain a critical advantage: they cut the number of stored
pointers in half, reducing writes, but they also store the XOR
of two pointers, which are likely to contain similar higher-
order bits, making the siblings pointer mostly zeros.

One problem with the original design for XOR linked lists
is that each node stores siblings = p�n, but for the first and
last node, p or n are NULL, so the full pointer value for its ad-
jacent node is stored in the head and tail. To further cut down
on bit flips, we changed this design so that the head and tail
XOR their adjacent nodes with themselves (if the node at ad-
dress h is the head, then it stores siblings = h�n instead of
siblings= 0�n). The optimization here is not a performance
optimization—in fact, it’s likely to reduce performance—
and only makes sense in the context of bit flips, an optimiza-
tion goal that would not be targeted before the introduction
of BNVM. However, with bit flips in-mind, it becomes crit-
ical. Other data structures may have similar optimizations
that we can easily make to reduce bit flips 1.

1Circular linked lists solve the head and tail siblings pointer problem
automatically, since no pointers are stored as NULL; however, in XOR linked
lists this increases the number of pointer updates during an insert operation
and requires storing two adjacent head nodes to traverse.

3.2 XOR Hash Tables
A direct application of XOR linked lists is chained hash-
ing, a common technique for dealing with hash table colli-
sions [12]. An array of linked list heads is maintained as the
hash table, and when an item is inserted, it is appended to the
list at the bucket that the item hashes to. To optimize for bit
flips, we can store an XOR list instead of a normal linked list,
but since bidirectional traversal is not needed in a hash table
bucket, we need not complicate the implementation with a
full XOR linked list. Instead, we apply the property of XOR
linked lists that we find useful—XORing pointers.

Each pointer in each list node is XORed with the address
of the node that contains that pointer. For example, a list
node n whose next node is p will store n� p instead of p. In
effect, this stores the distance between the nodes rather than
the absolute address of the next node and exploits locality in
memory allocators. The end of the list is marked with a NULL
pointer. In addition to a distance pointer, each node contains
a key and a pointer to a value. The list head stored in the
hash table is a full node, allowing access to the first entry in
the list without needing to follow a pointer.

A second optimization we make is that an empty list can
be marked in one of two ways: the least-significant bit (LSB)
of the next pointer set to one, or the data pointer set to NULL.
When we initialize the table, it is set to zero everywhere, so
the data pointers are NULL. During delete, if the list becomes
empty, the LSB of the next pointer in the list head is set to 1, a
value it would never have when part of a list. This allows the
data pointer to remain set to a value such that when it is later
overwritten, fewer bits need to change. This is an example
of an optimization that only makes sense in the context of bit
flips, as it increases code complexity for no other gain.

3.3 XOR Red-Black Trees
Binary search trees are commonly used for data indexing,
support range queries, and allow efficient lookup and modifi-
cation, as long as they are balanced. Red-black trees [12,31]
are a common balanced binary tree data structure with
strictly-bounded rebalancing operations during modification.
A typical red-black tree (RBT) node contains pointers to its
left child and right child, along with meta-data. They often
also contain a pointer to the parent node, since this enables
easier balancing implementation and more efficient range-
query support without significantly affecting performance
due to the increased memory usage [23].

We can generalize XOR linked lists to XOR trees. Instead
of storing left, right, and parent pointers, each node
stores xleft and xright, which are the XOR between each
child and the parent addresses. This reduces the memory
usage to the two-pointer case while maintaining the bene-
fits of having a parent pointer, since given a node and one
of its children (or its parent), we can traverse the entire tree.

20 17th USENIX Conference on File and Storage Technologies USENIX Association

Like XOR linked lists, the root node stores xleft = root

� left, where root is the address of the root node and
left is the address of its left child, saving bit flips. To indi-
cate that a node has no left or right child, it stores NULL.

Determining the child of a node requires both the node
and its parent:
get_left_child(Node *node, Node *parent) {

return (parent � node->xleft);

}

Getting a node’s parent, however, requires additional work.
Given a child c and a node n, getting n’s parent requires
we know which child (left or right) c is. Fortunately, in a
binary search tree we store the key k of a node in each node,
and the nodes are well-ordered by their k. Thus, getting the
parent works as follows:
get_parent(Node *n, Node *c) {

if(c->k < n->k) return (n->xleft � c);

else return (n->xright � c);

}

Note that this is not the only way to disambiguate between
pointers. In fact, it’s not strictly necessary to do so because
the algorithms can be implemented recursively without
ever needing to traverse up the tree explicitly. However,
providing upwards traversal can reduce the complexity of
implementation and improve the performance of iteration
over ranges. Another solution to getting the parent node
would be to record whether a node is a left or right child by
storing an extra bit along with the color. We did not evaluate
this method, as it would increase both writes and bit flips
over our method.

With these helper functions, we implemented both an
XOR red black tree (xrbt) and a normal red-black tree (rbt)
using similar algorithms. The code for xrbt was just 20 lines
longer, with only a minor increase in code complexity. Node
size was smaller in xrbt, with a node being 40 bytes instead
of 48 bytes as in rbt. To control for the effects of node size
on performance and bit flips, we built a variant of xrbt with
the same code but with a node size of 48 bytes (xrbt-big).

Generalization These techniques can generalize beyond a
red-black tree. Any ordered k-ary tree can use XOR pointers
in the same way. As discussed above, disambiguating be-
tween pointers during traversal depends on either additional
bits being stored or using an ordering property. Either tech-
nique can work with arbitrary graph nodes.

3.4 Stack Frames
Data structure layout and data writes are only some of the
writes made by a program. Register spills, callee-saved reg-
ister saving, and return addresses pushed during function
calls are all writes to memory, and if these writes make it
to BNVM, they will cause bit flips as well. These writes
may make it to main memory if the cache is saturated or if

the program is designed to keep program state in BNVM to
enable instantaneous restart after power cycles [26]. Addi-
tionally, systems designed for BNVM may run with write-
through caches to reduce consistency complexity, resulting
in execution state reaching BNVM.

The exact pattern of stack writes depends on the ABI and
the calling convention of a system and processor, though we
focus on x86-64 Linux systems. When a program calls a
function, it (potentially) pushes a number of arguments to
the stack, followed by a return address. In the called func-
tion, callee-saved registers are pushed to the stack, but only
if they are modified during that function’s execution. When
finished, the callee pops all the saved registers and returns.

Our observation is that the order that callee-saved regis-
ters are pushed to the stack is not specified, meaning that
two different functions could push the same registers in a
different order. Secondly, the same callee-saved register is
less-likely to change drastically in a small amount of code in
a tight loop, since these registers are typically used for loop
counters or bases for addressing. Thus, a loop that calls two
functions alternately will likely have similar or the same val-
ues in the callee-saved registers during the invocation of both
functions. If these two functions push the (often unchanged)
callee-saved registers to the same place both times, fewer bit
flips will occur than if the functions pushed them in different
orders. While this is just a simple example, such loops that
call out to alternating functions with different characteristics
can occur, for example, when rehashing a table, rebuilding a
tree, or reading task items from a linked list.

We propose specifying a callee-saved register frame lay-
out that functions adhere to, so that the registers are always
pushed in the same order. To handle variable numbers of
arguments, we make use of passing arguments in registers,
common in many modern ABIs. If a function need not push
any callee-saved registers, it can still reserve the stack space
for that frame and then not push anything to save writes.
Functions which only save a small number of registers can
still push them to the correct locations within the frame. Fi-
nally, if this is standardized, programs need not worry about
library calls increasing bit flips.

For example, if we have two functions A and B in an ABI
where registers e, f , g, h are callee-saved, and A uses e while
B uses g, then traditionally each function would simply push
the frame pointer followed by the register they wish to save:

A:

push fp

mov fp sp

push e

...

pop e

pop fp; ret

B:

push fp

mov fp sp

push g

...

pop g

pop fp; ret

If e and g are significantly different, then a significant
amount of needless bit flips could occur if these functions

USENIX Association 17th USENIX Conference on File and Storage Technologies 21

are called often. Instead, if we define a layout that functions
adhere to for register saving, the code would look like:

A:

push fp

mov fp sp

push e

sub sp, 24

...

add sp, 24

pop e

pop fp; ret

B:

push fp

mov fp sp

sub sp, 16

push g

sub sp, 8

...

add sp, 8

pop g

add sp, 16

pop fp; ret

Here the code always pushes the same register to the same
place, regardless of the registers it needs to save, thereby al-
lowing overwrites by likely similar values. While it does add
some additional instructions, code could instead write regis-
ters directly to the stack locations using offset style address-
ing, reducing code size.

4 Memory Characteristics Results

We evaluated XOR linked lists, XOR hash tables, and XOR
red-black trees, tracking bits flipped in memory, bytes writ-
ten to memory, and bytes read from memory during program
execution. Our goal was not only to demonstrate that our bit
flip optimizations were effective, but to also understand how
different system and program components affected bit flips.
In addition to tracking bit flips caused by our data structures,
we also studied bit flips caused by varying levels and sizes
of caching, calls to malloc, and writes to the stack. Fi-
nally, we evaluated the accuracy of in-code instrumentation
for bit flips, which would allow programmers to more easily
optimize for bit flips at lower cost than full-system simula-
tion. All of these experiments were designed to demonstrate
how effective certain bit flipping reduction techniques are.
Existing systems are poorly equipped to handle evaluation
of these techniques, since existing systems are poorly opti-
mized for BNVM. The techniques we present here are de-
signed to be used by system designers when building new,
BNVM-optimized systems.

4.1 Experimental Methods
Evaluating bit flips during data structure operations requires
more than simply counting the bits flipped in each write in
the code. Compiler optimizations, store-ordering, and the
cache hierarchy can all conspire to change the order and
frequency of writes to main memory, potentially causing a
manual count of bit flips in the code to deviate from the
bits flipped by writes that actually make it to memory. To
record better metrics than in-code instrumentation, we ran

Table 1: Cache parameters used in Gem5.

Cache Count Size Associativity
L1d 1 64KB 2-way
L1i 1 32KB 2-way
L2 1 2MB 8-way

our test programs on a modified version of Gem5 [3], a full-
system simulator that accurately tracks writes through the
cache hierarchy and memory. We modified the simulator’s
memory system so that, for each cache-line written, it could
compute the Hamming distance between the existing data
and the incoming write, thereby counting the bit flips caused
by each write to memory. The bit flips for each write were
added to a global count, which was reported after the pro-
gram terminated, along with the number of bytes written to
and read from memory. This gave us a more accurate picture
of the bit flips caused by our programs, since writes that stay
within the simulated cache hierarchy do not contribute to the
global count. We ran the simulator in system-call emula-
tion mode, which runs a cycle-accurate simulation, emulat-
ing system calls to provide a Linux-like environment, while
tracking statistics about the program, including the memory
events we recorded.

We used the default cache hierarchy (shown in Ta-
ble 1) provided by Gem5, using the command-line options
“--caches --l2cache”. For the XOR linked list and stack
writes experiments, we used clwb instructions to simulate
consistency points (in the linked list, clwb was issued to per-
sist the contents of a node before persisting the pointers to the
node, and for stack writes, clwb was issued after each write).
This was not done for the malloc experiment (we used an
unmodified system malloc for testing), the XOR hash table
(the randomness of access to the table quickly saturated the
caches anyway), or manual instrumentation (caches were ir-
relevant). For the XOR red-black tree, in addition to the bit
flip characteristics, we focused on observing how cache be-
havior affected more complex data structures; these results,
along with the results of varying L2 size, are discussed in
Section 4.6.

Most of the programs we ran accept as their first argu-
ment an iteration_count, which specifies how many iter-
ations the program should run. For example, the red-black
tree would do iteration_count number of insertions. We
ran the simulator on a range of iteration_counts, record-
ing the bits flipped, bytes written, and bytes read (col-
lectively referred to as memory events) for each value of
iteration_count. An example of a typical result is shown
in Figure 2. The result was often linear, allowing us to calcu-
late a linear regression using gnuplot, giving us both a slope
and confidence intervals. The slope of the line is “bit flips per
operation”—for example, a slope of 10 for linked list insert
means that it flipped 10 bits on average during insert oper-
ations. Throughout our results, only the slope is presented
unless the raw data is non-linear. Since the slope encodes

22 17th USENIX Conference on File and Storage Technologies USENIX Association

�.� �.� �.� �.� �.�
Iteration count ⇥���

�

�

�

Nu
m

be
ro

f
bi

ts
fli

pp
ed

⇥���

Data structure inserts

Figure 2: A typical result of running a test program with
increasing values of iteration_count.

the bit flips per operation, we can directly compare variants
of a data structure by comparing their slopes. Error bars are
95% confidence intervals.

4.2 Calls to malloc

Many data structures allocate data during their operation.
For example, a binary tree may allocate space for a node
during insert or a hash table might decide to resize its ta-
ble. An allocator allocating data from BNVM must store the
allocation metadata within BNVM as well, so the internal
allocator structures affect bit flips for data structures which
allocate memory. Additionally, the pointers returned them-
selves contribute to the bits flipped as they are written.

We called malloc 100,000 times with allocation sizes of
16, 24, 40, and 48 bytes. We chose these sizes because our
data structure nodes were all one of these sizes. The num-
ber of bits flipped per malloc call is shown in Figure 3. As
expected, larger allocation sizes flip more bits, since the al-
locator meta-data and the allocated regions span additional
cache lines. Interestingly, 40 byte allocations and 48 byte
allocations switch places partway through, with 40 byte al-
locations initially causing fewer bit flips and later causing
more after a cross-over point. We believe this is due to 40
byte allocations using fewer cache lines, but 48 byte alloca-
tions having better alignment.

After a warm-up period where the cache hierarchy has a
greater effect, the trends become linear, allowing us to calcu-
late the bit flips per malloc call. Allocating 40 bytes costs
1.5⇥ more bit flips on average than allocating 48 bytes. Al-
locating 24 or 16 bytes has the same flips per malloc as 48
bytes but has a longer warm-up period, such that programs
would need to call malloc (24) 1.56⇥ as often to flip the
same number of bits as malloc (48).

While the relative savings for bit flips between malloc

sizes are significant, their absolute values must be taken into
consideration. Calls to malloc for 16 and 48 bytes cost 2±
0.1 flips per malloc (after the warm-up period) while calls
to malloc for 40 bytes cost 3±0.1 flips per malloc. As we

will see shortly, the data structures we are evaluating flip tens
of bits per operation, indicating that savings from malloc

sizes are less significant than the specific optimizations they
employ.

4.3 XOR Linked Lists
We evaluated the bit flip characteristics of an XOR linked
list compared to a doubly-linked list, where we randomly in-
serted (at the head) and popped nodes from the tail at a ratio
of 5:1 inserts to pops. The results are shown in Figure 4. As
expected, bit flips are significantly reduced when using XOR
linked lists, by a factor of 3.56⇥. However, both the num-
ber of bytes written to and read from memory were the same
between both lists. The reason is that, although an XOR list
node is smaller, malloc actually allocates the same amount
of memory for both.

We counted the number of pointer read and write oper-
ations in the code, and discovered that, although the XOR
linked list performs fewer write operations during updates,
it performs more read operations than the doubly-linked list.
This is because updating the data structure requires more in-
formation than in a doubly-linked list. However, Figure 4
shows that the number of reads from memory are the same,
indicating that the additional reads are always in-cache.

4.4 XOR Hash Tables
We implemented two variants of our hash table: “single-
linked”, which implemented chaining using a standard
linked list, and “XOR Node”, which XORs each pointer in
the chain with the address of the node containing the pointer.
We ran a Zipfian workload on them [5], where 80% of up-
dates happen to 20% of keys2, where keys and values were
themselves Zipfian. During each iteration, if a key was
present, it was deleted, while if it was not present, it was

2Skew of 1, with a population of 100,000.

�.� �.� �.� �.�
Number of calls to malloc() ⇥���

�.�

�.�

�.�

�.�

Nu
m

be
ro

fb
its

fli
pp

ed

⇥���

�� bytes
�� bytes
�� bytes

Figure 3: Bit flips due to calls to malloc. Allocation size of
16 bytes is not shown because it matches with 24 bytes.

USENIX Association 17th USENIX Conference on File and Storage Technologies 23

Bits Flipped Bytes Written Bytes Read
�

�

��

��

M
em

or
y

ev
en

ts
pe

ro
pe

ra
tio

n

Doubly
XOR

Figure 4: Memory characteristics of of XOR linked lists
compared to Doubly-Linked Lists.

Bits Flipped Bytes Written
�

��

��

��

M
em

or
y

ev
en

ts
pe

r
in

se
rt

op
er

at
io

n

��.� ��.�

Single-linked
Node XOR

Figure 5: Memory characteristics of XOR hash table variants
under Zipfian workload.

inserted. This resulted in a workload where a large number
of keys were rarely modified, but a smaller percentage were
repeatedly inserted or removed from the hash table.

Figure 5 shows the bits flipped and bytes written by the
hash table after 100,000 updates. As expected, the XOR lists
saw a reduction in bit flips over the standard, singly-linked
list implementation while the number of bytes written were
unchanged. We were initially surprised by the relatively low
reduction in bit flips (1.13⇥) considering the relative success
of XOR linked lists; however, the common case for hash ta-
bles is short chains. We observed that longer chains improve
the bit flips savings, but forcing long hash chains is an unre-
alistic evaluation. Since buckets typically have one element
in them, and that element is stored in the table itself, there
are few pointers to XOR, meaning the reduction is primarily
from indicating a list is valid via the least-significant bit of
the next pointer. The bit flips in all variants come primar-
ily from writing the key and value, which comprise 9.3 bit
flips per iteration on average. Thus, this data structure had
little room for optimization, and the improvements we made
were relatively minor—although they still translate directly
to power saving and less wear, and are easy to achieve while
not affecting code complexity significantly.

Bits Flipped Bytes Written
Seq. Rand. Seq. Rand.

�

��

���

���

���

M
em

or
y

ev
en

ts
pe

ri
ns

er
t

��
.�

±
�.

�

��
.�

±
�.

�

��
.�

±
�.

� ��
�.

�
±

�

��
.�

±
�.

�

��
.�

±
�.

� ��
.�

±
�.

� ��
�.

�
±

�

��
.�

±
�.

�

��
.�

±
�.

�

��
.�

±
�.

� ��
�.

�
±

�xrbt
xrbt-big
rbt

Figure 6: Memory characteristics of XOR red-black trees
compared to normal red-black trees.

4.5 XOR Red-Black Trees

Figure 6 shows the memory event characteristics of xrbt

(our XOR RBT with two pointers, xleft and xright),
xrbt-big (our XOR RBT with each node inflated to the
size of our normal RBT nodes), and rbt (our standard RBT)
under sequential and random inserts of one million unique
items. Each item comprises an integer key from 0 to one
million and a random value. Both xrbt and xrbt-big cut
bit flips by 1.92⇥ (nearly in half) in the case of sequential in-
serts and by 1.47⇥ in the case of random inserts, a dramatic
improvement for a simple implementation change. The small
saving in bit flips in xrbt-big over xrbt is likely due to the
allocation size difference as discussed in Section 4.2.

The number of bytes written is also shown in Figure 6.
Due to the cache absorbing writes, xrbt-big and rbt write
the same number of bytes to memory in all cases, even
though rbt writes more pointers during its operation. We
can also see a case where the number of writes was not cor-
related with the number of bits flipped, since xrbt writes
fewer bytes but flips more bits than xrbt-big.

We did not implement and test delete operation in our red-
black trees because the algorithm is similar to insert in that
its balancing algorithm is tail-recursive and merely recolors
or rotates the tree a bounded number of times. Since the
necessary functions to implement this algorithm are present
in all variations, it is certainly possible to implement, and we
expect the results to be similar between them.

4.6 Cache Effects

Although it is easy to exceed the size of the L1 cache dur-
ing normal operation of large data structures at scale, larger
caches may have more of an effect on the frequency of writes
to memory. Of course, a persistent data structure which is-
sues cache-line writebacks or uses write-through caching by-

24 17th USENIX Conference on File and Storage Technologies USENIX Association

�.� �.� �.� �.� �.�
Number of insert operations ⇥���

�

�

�

�

�

Nu
m

be
ro

fb
its

fli
pp

ed

⇥���

xrbt, no L�
rbt, no L�
xrbt, with L�
rbt, with L�

Figure 7: Bits flipped by xrbt and rbt over a varying number
of sequential inserts, with and without the L2 cache present.

passes this by causing all writes to go to memory3, but it is
still worth studying the effects of larger write-back caches on
bit flips. They may absorb specific writes that have higher
than average flips, or they may cause coalescing even for
persistent data structures worrying about consistency.

We studied cache effects in two ways—how the mere pres-
ence of a layer-2 cache affects the data structures we studied
and how varying the size of that cache affects them. Fig-
ure 7 shows xrbt compared with rbt, with and without L2.
The effect of L2 is limited as the operations scale, with the
bit flips for both data structures reaching a steady, linear in-
crease once L2 is saturated. The bit flips per operation for
both data structures with L2 is the same as without L2 once
the saturation point is reached, indicating that while the pres-
ence of the cache delays bit flips from reaching memory, it
does little to reduce them in the long term. Finally, since
xrbt has fewer bit flips overall and fewer memory writes, it
took longer to saturate L2, delaying the effect.

Next, we looked at different L2 sizes, running xrbt with
no L2, 1MB L2, 2MB L2 (the default), and 4MB L2, as
shown in Figure 8. The exact same pattern emerges for each
size, delayed by an amount proportional to the cache size.
This is to be expected, and it further corroborates our claim
that cache size has only short-term effects.

4.7 Manual Instrumentation
While testing data structures on Gem5 was straightforward,
if time consuming, more complex structures and programs
may be difficult to evaluate, either due to Gem5’s relatively
limited system call support or due to the extreme slowdown
caused by the simulation. Since real hardware does not pro-
vide bit flip counting methods, we are left with using in-

3Even if this is the case, a full system simulator will give a more accurate
picture than manually counting writes, since store ordering and compiler
optimizations still affect memory behavior.

�.� �.� �.� �.� �.�
Number of insert operations ⇥���

�

�

�

Nu
m

be
ro

fb
its

fli
pp

ed

⇥���

No L�
�MB L�
�MB L�
�MB L�

Figure 8: Bits flipped by xrbt over a varying number of se-
quential inserts, with different sizes for L2.

�.� �.� �.� �.� �.� �.�
Number of insert operations ⇥���

�.�

�.�

�.�

�.�

�.�

Nu
m

be
ro

fb
its

fli
pp

ed

⇥���

xlist, sim.
dlist, sim.
xlist, instr.
dlist, instr.

Figure 9: Manual instrumentation for counting bit flips (in-
str) compared to full-system simulation (sim).

program instrumentation if we want to avoid the Gem5 over-
head. However, these results may be less accurate.

To study the accuracy of in-code instrumentation, we man-
ually counted bit flips in the XOR and doubly-linked lists.
We did this by replacing all direct data structure writes
(e.g., node->prev = pnode) with a macro that both did that
write and also counted the number of bytes (by looking at
the types), and computing the Hamming distance between
the original and new values. Totals of each were kept track
of and reported at the end of program execution. While not
difficult to implement, manual instrumentation adds the pos-
sibility of error and increases implementation complexity.

Figure 9 shows the results of manual instrumentation com-
pared to results from Gem5. While accuracy suffered, man-
ual counting was not off by orders of magnitude. It properly
represented the relationship between XOR linked lists and
doubly-linked lists in terms of bit flips, and it was off by a
constant factor across the test. We hypothesize that the dis-

USENIX Association 17th USENIX Conference on File and Storage Technologies 25

x-x x-s x-y
�

��
��
��
��

���

Bi
ts

fli
pp

ed
pe

ri
te

ra
tio

n

�� ��

��.�

x-x x-s x-y
�

���

���

By
te

sw
rit

te
n

pe
ri

te
ra

tio
n

Figure 10: Evaluating memory events for different stack
frame layouts.

crepancy arose from the fact that our additional flip counting
code affected the write combining and (possibly) the cache
utilization. We expect that future system designs could “cal-
ibrate” manual instrumentation by running a smaller version
of their system on Gem5 to calculate the discrepancy be-
tween its counts and theirs, allowing them to more accurately
extrapolate the bits flipped in their system using instrumenta-
tion. Additionally, one could modify toolchains and debug-
ging tools to automatically emit such instrumentation code
during code generation. Manual instrumentation may find its
use here for large systems that are too complex or unwieldy
to run on Gem5, or as a way to quickly prototype bit flipping
optimizations.

4.8 Stack Frames
To study bit flips caused by stack writes, we wrote an as-
sembly program that alternates between two function calls
in a tight loop while incrementing several callee-saved regis-
ters on x86-64. The loop could call two of three functions—
function x, which pushed six registers (the callee-save regis-
ters on x86_64, including the base pointer) in a given order,
y, which pushed the registers in a different, given order, and
s, which pushed only two of the registers, but pushed them
to the same locations as function x. Our program had three
variations: x-x, which called function x twice, x-s, which al-
ternated between functions x and s, and x-y, which alternated
between functions x and y. The x-y variant represents the
worst-case scenario of today’s methods for register spilling,
while x-s demonstrates our suggestion for reducing bit flips.
To force the writes to memory, we used clwb after the writes
to simulate write-through caching or resumable programs.

Figure 10 shows both bit flips (left) and bytes written
(right) by all three variants. The x-s and x-x variants have
similar behavior in terms of bit flips, which is understand-
able because they are pushing registers to the same locations
within the frame. The x-y variant, however, had 3.8⇥ the
number of bit flips compared to x-x and 4.1⇥ the number of
bit flips compared to x-s, showing that consistency of frame
layout has dramatic impact. Unsurprisingly, x-x and x-y had
the same number of bytes written, since they write the same

Table 2: Performance of XOR linked lists compared with
doubly-linked lists.

Operation XOR Linked Doubly-Linked
Insert (ns) 45±1 45±1
Pop (ns) 27±1 28±1

Traverse (ns/node) 2.6±0.1 2.2±0.1

number of registers, while x-s wrote fewer registers. By
keeping frame layout consistent, we can reduce bit flips, and
the optimization of only pushing the registers needed but to
the same locations can further reduce writes as well.

5 Performance Analysis

While bit flip optimization is important, it is less attractive if
it produces a large performance cost. We compared our data
structures’ performance to equivalent “normal” versions not
designed to reduce bit flips. Benchmarks were run on an i7-
6700K Intel processor at 4GHz, running Linux 4.18, glibc
2.28. They were compiled using gcc 8.2.1 and linked with
GNU ld 2.31.1. Unless otherwise stated, programs were
linked dynamically and compiled with O3 optimizations.

XOR Linked Lists The original publication of XOR
linked lists found little performance difference between them
and normal linked lists [34]; we see the same relationship in
our implementation (see Table 2). The only statistically sig-
nificant difference was seen in traversal, where XOR linked
lists have a 1.18⇥ increase in latency; however, both lists av-
erage less than three nanosecond-per-node during traversal.

XOR Hash Tables Figure 11 shows the performance of
the two hash table variants we developed. We inserted
100,000 keys, followed by lookup and delete. As expected,
both variants have nearly identical latencies, with a slow-
down of only 1.06⇥ for using XOR lists during lookup.

XOR Red-Black Trees We measured xrbt, xrbt-big,
and rbt during 100,000 inserts and lookups, the results of

Insert Lookup Delete
�

��

��

Na
no

se
co

nd
s

pe
ro

pe
ra

tio
n Single-linked

Node XOR

Figure 11: Performance of XOR hash table variants.

26 17th USENIX Conference on File and Storage Technologies USENIX Association

Seq. Insert Rand. Insert
�

���

���

���

Na
no

se
co

nd
sp

er
in

se
rt

}{ ab

xrbt
xrbt-big
rbt

Figure 12: Insert latency for XOR red-black trees compared
to normal red-black trees. The label “a” shows the cost of
the XORs, while “b” shows the cost of the larger node.

Seq. Lookup Rand. Lookup
�

���

���

Na
no

se
co

nd
sp

er
lo

ok
up xrbt

xrbt-big
rbt

Figure 13: Lookup latency for XOR red-black trees com-
pared to normal red-black trees.

which are shown in Figure 12 and Figure 13. During insert,
xrbt is actually slightly faster than rbt, with xrbt-big be-
ing slower, indicating that although there is a non-zero cost
for the additional XOR operations, it is outweighed by the
performance improvement from smaller node size and better
cache utilization. The lookup performance shown in Fig-
ure 13 demonstrates a similar pattern, although for sequen-
tial lookup the overheads are similar enough that there is no
significant performance difference between xrbt and rbt.

6 Discussion

Software Bit Flip Reduction The data structures pre-
sented here are both old and new ideas. While not algorith-
mically different from existing implementations (both xrbt

and rbt use the same, standard red-black tree algorithms),
they present a new approach to implementation with opti-
mizations for bit flipping. This has not been sufficiently stud-
ied before in the context of software optimization; after all,
there is no theoretical advance nor is there an overwhelming
practical advantage to these data structures outside of the bit
flip reduction, an optimization goal that is new with BNVM.

However, keeping this in mind has huge ramifications for
data structures in persistent memory and applications for new
storage technologies, as it presents a whole new field of study
in optimization and practical data structure design. The goal
is not performance improvements; instead we strive to pro-
long the lifetime of expensive memory devices while reduc-
ing power use, with at most a minor performance cost. These
improvements can be achieved without hardware changes,
meaning even savings of 10% (1.1⇥) or less are worthwhile
to implement because savings are cumulative.

These optimizations are not specific to PCM; any memory
with a significant read/write disparity and bit-level updates
could benefit from this. The energy savings from bit flip opti-
mization will, of course, be technology-dependent, numbers
for which will solidify as the technologies are adopted. Our
estimates of the linear relationship between flips and power
use (Figure 1) indicate that, on PCM, the energy savings will
be roughly proportional to the bit flip savings since the dif-
ference between read and write energy is so high.

Bit flips can and should be reasoned about directly. Not
only is it possible to do so, but the methods presented here
are straightforward once this goal is in mind. Furthermore,
while reducing writes can reduce bit flips, we have con-
firmed that this is not always true. XOR linked lists reduced
bit flips without affecting writes, while xrbt reduced writes
over xrbt-big at the cost of increasing bit flips. With stack
frames, the biggest reduction in bit flips corresponded with
no change in writes, while the reduction of writes was corre-
lated with only a modest bit flip reduction.

The implications are far-reaching, especially when consid-
ering novel computation models that include storing program
state in BNVM. Writes to the stack also affect bit flips, but
these can be dramatically optimized. Compilers can imple-
ment standardized stack frame layouts for register spills that
save many bit flips while remaining backwards compatible
since nothing in these optimizations breaks existing ABIs.
Further research is required to better study the effects of
stack frame layout in larger programs, and engineering work
is needed to build these features into existing toolchains.

Of course, we must be cautious to optimize where it mat-
ters. While different allocation sizes reduced bit flips relative
to each other, the overall effect was minor compared to the
savings gained in other data structures. In fact, the reduc-
tion in allocation size from 48 to 40 bytes in xrbt actually
increased bit flips in calls to malloc, but this increase is
dwarfed by the savings from the XOR pointers. Addition-
ally, the hash table saw a relatively small saving compared to
other data structures since it already flipped a minimal num-
ber of bits in the average case; red-black trees often do more
work during each update operation, resulting in a number
of pointer updates. Hash tables often do their “rebalancing”
during a single rehash operation; perhaps bit flip optimiza-
tion for hash tables should focus on these operations, some-
thing we plan to investigate in the future.

USENIX Association 17th USENIX Conference on File and Storage Technologies 27

Cache Effects The data structures we tested all had the
same behavior—a warm-up period where the cache system
absorbed many of the writes followed by a period of propor-
tional increasing of bit flips as the number of update opera-
tions increased. We must keep this in-mind when evaluating
data structures for bit flips, since we must ensure that the
ranges of inputs we test reach the expected scale for our data
structures, or we may be blind to its true behavior. The cache
size affects this, of course, but it does so in a predictable way
in the case of xrbt, with only the warm-up period being ex-
tended by an amount proportional to cache size. Of course,
the behaviour may be heavily dependent on write patterns.
Thus, we recommend further experiments and that system
designers take caches into account when evaluating bit flip
behaviour of their systems.

The cache additionally affects the read amplification seen
in XOR linked lists, wherein the XOR linked list implemen-
tation issues more reads than a doubly-linked list implemen-
tation. However, the reads that make it to memory are the
same between the two, indicating that those extra reads are
always in-cache. The resultant write reduction and bit flip
reduction is well worth the cost since a read from cache is
significantly cheaper than a write to memory.

7 Future Work

Although we covered a range of different data structures,
there are many more used in storage systems that should be
examined, such as B-trees [1] and LSM-trees [27], both to
understand their bit flipping behavior as compared to other
data structures and to examine for potential optimizations.
In addition to data structures, different algorithms such as
sorting can be evaluated for bit flips. Though this may come
down to data movement minimization, there may be opti-
mizations in locality that could affect bit flips.

While data structure and algorithm evaluation can pro-
vide system designers with insights for how to reduce bit
flips, examining bit flips in a large system, including one that
properly implements consistency and our suggested stack
frame modifications (perhaps through compiler modifica-
tion), would be worthwhile. There are a number of BNVM-
based key-value stores [37]; comparing them for bit flips
could demonstrate the benefits of some designs over others.

Studying bit flips directly is a good metric for understand-
ing power consumption and wear, but a better understanding
through the evaluation of real BNVM would be illuminat-
ing. The power study discussed earlier was derived from a
number of research papers that give approximate numbers
or estimates. On a real system, we could measure power
consumption, and cooperation with vendors may enable ac-
curate studies of wear caused by bit flips. Additionally, some
technologies (e.g., PCM) have a disparity between writing a
1 or a 0, something that could be leveraged by software (in
cooperation with hardware) to further optimize power use.

8 Conclusion

The pressures from new storage hardware trends compel us
to explore new optimization goals as BNVM becomes more
common as a persistent store; the read/write asymmetry of
BNVM must be addressed by reducing bit flips. As we
showed, the number of raw writes is not always a faithful
proxy for the number of bit flips, so simple techniques that
minimize writes overall may be ineffective. At the OS level,
we can reconsider memory allocator design to minimize bit
flips as pointers are written. Different data structures use and
write pointers in different ways, leading to different trade-
offs for data structures when considering BNVM applica-
tions. At the compiler level, we show that careful layout of
stack frames can have a significant impact on bit flips dur-
ing program operation. Since it can be challenging to reason
directly about how application-level writes translate to raw
writes due to the compiler and caches, more sophisticated
profiling tools are needed to help navigate the tradeoffs be-
tween performance, consistency, power use, and wear-out.

Most importantly, we demonstrated the value of reason-
ing at the application level about bit flips, reducing bit flips
by 1.13� 3.56⇥ with minor code changes, no significant
increase in complexity, and little performance loss. The
data structures we studied had novel implementations, but
were algorithmically the same as their standard implemen-
tations; yet we still saw dramatic improvements with little
effort. This indicates that reasoning about bit flips in soft-
ware can yield significant improvements over in-hardware
solutions and opens the door for additional research at a va-
riety of levels of the stack for bit flip reduction. These tech-
niques translate directly to power saving and lifetime im-
provements, both important optimizations for early adoption
of new storage trends that will have lasting impact on sys-
tems, applications, and hardware.

Availability

Source code, scripts, Gem5 bit flip patch, and raw re-
sults are available at https://gitlab.soe.ucsc.edu/

gitlab/crss/opensource-bitflipping-fast19.

Acknowledgments

This research was supported in part by the National Science
Foundation grant number IIP-1266400 and by the industrial
partners of the Center for Research in Storage Systems. The
authors additionally thank the members of the Storage Sys-
tems Research Center for their support and feedback. We
would like to extend our gratitude to our paper shepherd,
Sam H. Noh, and the anonymous reviewers for their feed-
back and assistance.

28 17th USENIX Conference on File and Storage Technologies USENIX Association

https://gitlab.soe.ucsc.edu/gitlab/crss/opensource-bitflipping-fast19
https://gitlab.soe.ucsc.edu/gitlab/crss/opensource-bitflipping-fast19

References

[1] R. Bayer and E. McCreight. Organization and mainte-
nance of large ordered indices. In Proceedings of the
1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control, SIGFIDET ’70,
pages 107–141, New York, NY, USA, 1970. ACM.

[2] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa,
M. Ferraro, F. Pellizzer, F. Ottogalli, A. Pirovano, and
M. Tosi. An 8MB demonstrator for high-density 1.8 V
phase-change memories. In Symposium on VLSI Cir-
cuits 2004 Digest of Technical Papers, pages 442–445.
IEEE, 2004.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. The Gem5 simula-
tor. SIGARCH Computer Architecture News, 39(2):1–
7, Aug. 2011.

[4] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay,
M. Bryson, P. Alvaro, D. D. E. Long, and E. L.
Miller. Designing data structures to minimize bit
flips on NVM. In Proceedings of the 7th IEEE Non-
Volatile Memory Systems and Applications Symposium
(NVMSA 2018), Aug. 2018.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: evidence and
implications. In In Proceedings of Conference on
Computer Communications, IEEE INFOCOM ’99, vol-
ume 1, pages 126–134, March 1999.

[6] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy. Overview of
candidate device technologies for storage-class mem-
ory. IBM Journal of Research and Development,
52(4/5):449–464, July 2008.

[7] S. Chen, P. B. Gibbons, and S. Nath. Rethinking
database algorithms for phase change memory. In Pro-
ceedings of the 5th Biennial Conference on Innovative
Data Systems Research, pages 21–31, January 2011.

[8] S. Cho and H. Lee. Flip-N-Write: a simple determin-
istic technique to improve PRAM write performance,
energy and endurance. In Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 347–357. ACM, 2009.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories. In Proceedings of the 16th
International Conference on Architectural Support for

Programming Languages and Operating Systems (AS-
PLOS ’11), pages 105–118, Mar. 2011.

[10] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller,
C. Sandvig, R. Sears, A. Tamches, N. Vachharajani,
and F. Wang. Purity: Building fast, highly-available
enterprise flash storage from commodity components.
In Proceedings of SIGMOD 2015, June 2015.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Princi-
ples (SOSP ’09), pages 133–146, Oct. 2009.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[13] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A hy-
brid PRAM and DRAM main memory system. In Pro-
ceedings of the 46th IEEE Design Automation Confer-
ence (DAC ’09), pages 664–669. IEEE, 2009.

[14] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. NVSim: a
circuit-level performance, energy, and area model for
emerging nonvolatile memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 31(7), July 2012.

[15] G. Fox, F. Chu, and T. Davenport. Current and future
ferroelectric nonvolatile memory technology. Journal
of Vacuum Science & Technology B: Microelectronics
and Nanometer Structures Processing, Measurement,
and Phenomena, 19(5):1967–1971, 2001.

[16] K. M. Greenan and E. L. Miller. PRIMS: Making
NVRAM suitable for extremely reliable storage. In
Proceedings of the Third Workshop on Hot Topics in
System Dependability (HotDep ’07), June 2007.

[17] M. Han, Y. Han, S. W. Kim, H. Lee, and I. Park.
Content-aware bit shuffling for maximizing PCM en-
durance. ACM Transactions on Design Automation of
Electronic Systems, 22(3):48:1–48:26, May 2017.

[18] Intel Newsroom. Intel and Micron produce
breakthrough memory technology, 2015. http:

//newsroom.intel.com/news-releases/intel-

and-micron-produce-breakthrough-memory-

technology/; Accessed 2019-01-10.

[19] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin. Coset
coding to extend the lifetime of memory. In Pro-
ceedings of High Performance Computer Architecture
(HPCA ’13), pages 222–233. IEEE, 2013.

USENIX Association 17th USENIX Conference on File and Storage Technologies 29

http://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
http://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
http://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
http://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/

[20] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim,
and V. Raghunathan. Powering the internet of things.
In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED ’14), pages
375–380, New York, NY, USA, 2014. ACM.

[21] H. Jayakumar, A. Raha, and V. Raghunathan. Quick-
recall: A low overhead HW/SW approach for enabling
computations across power cycles in transiently pow-
ered computers. In Proceedings of the 27th Interna-
tional Conference on VLSI Design and 13th Interna-
tional Conference on Embedded Systems, pages 330–
335. IEEE, 2014.

[22] T. Kawahara. Scalable spin-transfer torque RAM tech-
nology for normally-off computing. IEEE Design and
Test of Computers, 28(1):52–63, Jan 2011.

[23] E. Kohler. Left-leaning red-black trees consid-
ered harmful. http://read.seas.harvard.edu/

~kohler/notes/llrb.html. Accessed 2018-09-22.

[24] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architect-
ing phase change memory as a scalable dram alterna-
tive. In ACM SIGARCH Computer Architecture News,
volume 37, pages 2–13. ACM, 2009.

[25] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and
O. Mutlu. A case for efficient hardware/software co-
operative management of storage and memory. In
5th Workshop on Energy-Efficient Design (WEED ’13),
June 2013.

[26] D. Narayanan and O. Hodson. Whole-system persis-
tence. In Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’12), pages
401–500, Mar. 2012.

[27] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informat-
ica, 33(4):351–385, June 1996.

[28] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srini-
vasan, L. Lastras, and B. Abali. Enhancing lifetime
and security of PCM-based main memory with start-
gap wear leveling. In Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2009.

[29] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable
high performance main memory system using phase-
change memory technology. In Proceedings of the 36th
annual international symposium on Computer archi-
tecture (ICSA ’09), pages 24–33, 2009.

[30] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-
H. Chen, H.-L. Lung, and C. H. Lam. Phase-change
random access memory: A scalable technology. IBM
Journal of Research and Development, 52(4/5):465–
480, July 2008.

[31] R. Sedgewick and L. J. Guibas. A dichromatic frame-
work for balanced trees. In Proceedings of the 19th An-
nual Symposium on Foundations of Computer Science
(SFCS ’78), volume 00, pages 8–21, 10 1978.

[32] S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones,
and R. Melhem. Improving bit flip reduction for biased
and random data. IEEE Transactions on Computers,
65(11):3345–3356, 2016.

[33] S.-S. Sheu et al. Fast-write resistive RAM (RRAM) for
embedded applications. IEEE Design & Test of Com-
puters, pages 64–71, Jan. 2011.

[34] P. Sinha. A memory-efficient doubly linked list. Linux
Journal, 129, 2004. http://www.linuxjournal.

com/article/6828.

[35] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
453:80–83, May 2008.

[36] H. Volos, A. Jaan Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the
16th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS ’11), Mar. 2011.

[37] F. Xia, D. Jiang, J. Xiong, and N. Sun. HiKV: A hybrid
index key-value store for DRAM-NVM memory sys-
tems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 349–362, Santa Clara, CA,
2017. USENIX Association.

[38] J. Xu and S. Swanson. NOVA: a log-structured file sys-
tem for hybrid volatile/non-volatile main memories. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST ’16), Feb. 2016.

[39] B. D. Yang, J. E. Lee, J. S. Kim, J. Cho, S. Y. Lee,
and B. G. Yu. A low power phase-change random ac-
cess memory using a data-comparison write scheme. In
Proceedings of IEEE International Symposium on Cir-
cuits and Systems, May 2007.

[40] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable
and energy efficient main memory using phase change
memory technology. In Proceedings of the 36th Inter-
national Symposium on Computer Architecture, pages
14–23, 2009.

30 17th USENIX Conference on File and Storage Technologies USENIX Association

http://read.seas.harvard.edu/~kohler/notes/llrb.html
http://read.seas.harvard.edu/~kohler/notes/llrb.html
http://www.linuxjournal.com/article/6828
http://www.linuxjournal.com/article/6828

	Introduction
	BNVM and Bit Flips
	Optimizing for Memory Technologies
	Power Consumption of PCM and DRAM
	Wear-out
	Reducing Impact of Bit Flips in BNVM

	Reducing Bit Flips in Software
	XOR Linked Lists
	XOR Hash Tables
	XOR Red-Black Trees
	Stack Frames

	Memory Characteristics Results
	Experimental Methods
	Calls to malloc
	XOR Linked Lists
	XOR Hash Tables
	XOR Red-Black Trees
	Cache Effects
	Manual Instrumentation
	Stack Frames

	Performance Analysis
	Discussion
	Future Work
	Conclusion

