‘ This paper appears in the Proceedings of the 72" USENIX Conference on File and Storage Technologies, San Francisco, CA, February 2009.

Spyglass: Fast, Scalable Metadata Search for Large-ScaléoBage Systems

Andrew W. Leung Minglong Shad Timothy Bissod Shankar Pasupathy Ethan L. Miller
*University of California, Santa Cruz TNetApp
{aleung, elm@cs.ucsc.edu {minglong, thisson, shankaj@netapp.com

Abstract Metadata search allows point, range, tomand aggre-
gation search over file properties, facilitating complex,

The scale of today’s storage systems has made it '"3d hoc gueries about the files being stored. For exam-

cr_easingly difficult to find and manage files. To address le, it can help an administrator answer “which files can
this, we have_; develqped Sp)_/glass, a file metadata seartﬁ-é moved to second tier storage?” or “which applica-
system that IS speually d.eS|gned.for Iarge—scale Storagﬁon’s and user’s files are consuming the most space?”.
systems. Using an optimized design, guided by an anall?/letadata search can also help a user find his or her ten

ysis of real-world metadata traces and a user study, Sloyrhost recently accessed presentations or largest virtual

glass allows fast, complex searches over file metadata t L e : :

.- achine images. Efficiently answering these questions
help users and administrators better understand and man:- . .
age their files can greatly improve how user and administrator manage

. files in large-scale storage systems.
Spyglass achieves fast, scalable performance through Unfortunatelv. fast and efficient metadat hi
the use of several novel metadata search techniques thI%t nfortunately, fast and efticient metadata search in

exploit metadata search properties. Flexible index con- rge-scale_storage systems is difficult to ach|_eve. Both
trol is provided by an index partitioning mechanism that cuStomer discussions [37] and personal experience have
%]mwn that existing enterprise search tools that provide

leverages namespace locality. Signature files are use
to significantly reduce a query’s search space, improvin -etadata search [4,14,17,21, 30] are pftgn 100 expen-
ve, slow, and cumbersome to be effective in large-scale

performance and scalability. Snapshot-based metada ; Effect tadat h A i |
collection allows incremental crawling of only modified systems. Lliectivemeladata search must meet severa
requirements. First, it must be able to quickly gather

files. A novel index versioning mechanism provides both
fast index updates and “back-in-time” search of metg.netadata from the storage system. We have observed

data. An evaluation of our Spyglass prototype using ouFOg]ng:'al stystemsltggt_rtgol;ﬂ hc:jurs to CLaWI(?OO SBt
real-world, large-scale metadata traces shows search p n ays to craw - >econd, search and update

formance that is 1-4 orders of magnitude faster than ex_[nUSt be fast and scalable. Existing systems typically

isting solutions. The Spyglass index can quickly be up—InOIeX metadata in a general-purpose DBMS. However,

dated and typically requires less than 0.1% of disk spacel:.>B'vISS are not a perfect fit for metadata search, which

Additionally, metadata collection is up to ¥Caster than can limit their performance and scalability in large-scale
existing apr;roaches systems. Third, resource requirements must be low. Ex-

isting tools require dedicated CPU, memory, and disk
hardware, making them expensive and difficult to inte-
1 Introduction grate into the storage system. Fourth, the search inter-
face must be flexible and easy to use. Metadata search
The rapidly growing amounts of data in today’s stor- €nables complex file searches that are difficult to ask
age systems makes finding and managing files extremeNlyith existing file system interfaces and query languages.
difficult. Storage users and administrators need to effiFifth, search results must be secure; many existing sys-
ciently answer questions about the properties of the filegems either ignore file ACLs or significantly degrade per-
being stored in order to properly manage this increasformance to enforce them.
ingly large sea of data. Metadata search, which involves To address these issues, we developed Spyglass, a
indexing file metadata such as inode fields and extendedovel metadata search system that exploits file metadata
attributes, can help answer many of these questions [26properties to enable fast, scalable search that can be em-

bedded within the storage system. To guide our designis typically represented gattribute value pairs that de-
we collected and analyzed file metadata snapshots frorscribe file properties. Today’s storage systems can con-
real-world storage systems at NetApp and conducted &in millions to billions of files, and each file can have
survey of over 30 users and IT administrators. Our de-dozens of metadata attribute-value pairs, resulting in a
sign introduces several new metadata search techniquesata set with 18 — 10! total pairs.
Hierarchical partitioningis a new method of namespace- The ability to search file metadata facilitates complex
based index partitioning that exploits namespace localgueries on the properties of files in the storage system,
ity to provide flexible control of the indexSignature helping administrators understand the kinds of files being
files are used to compactly describe a partition’s con-stored, where they are located, how they are used, how
tents, helping to route queries only to relevant partitionsthey got there (provenance), and where they should be-
and prune the search space to improve performance andng. For example, finding which files to migrate to tape
scalability. A newsnapshot-basethetadata collection may involve searching file size, access time, and owner
method provides scalable collection by re-crawling onlymetadata attributes, allowing administrators to decide on
the files that have changed. Finalpartition versioning and enforce their management policies. Metadata search
a novel index versioning mechanism, enables fast upalso helps users locate misplaced files, manage their stor-
date performance while allowing “back-in-time” search age space, and track file changes. As a result, metadata
of past metadata. Spyglass does not currently addresgarch tools are becoming more prevalent; recent reports
search interface or security, which are left to future work.state that 37% of enterprise businesses use such tools and
An evaluation of our Spyglass prototype, using our40% plan to do so in the near future [12].
real-world, large-scale metadata traces, shows that To better understand metadata search needs, we sur-
search performance is improved 1-4 orders of magniveyed over 30 large scale storage system users and ad-
tude compared to basic DBMS setups. Additionally, ministrators. We found subjects using metadata search
search performance is scalable; it is capable of searcHer a wide variety of purposes. Use cases included
ing hundreds of millions of files in less than a second.managing storage tiers, tracking legal compliance data,
Index update performance is up tox4@aster than basic searching large scientific data output files, finding files
DBMS setups and scales linearly with system size. Thavith incorrect security ACLs, and resource/capacity
index itself typically requires less than 0.1% of total disk planning. Table 1 provides examples of some popular
space. Index versioning allows “back-in-time” metadatause cases and the metadata attributes searched.
search while adding only a tiny overhead to most queries.
Finally, our snapshot-based metadata collection mechas .
nism);Jerforms g& faster than a straw-man approach.az'2 Efficient Metadata Search
Our evaluation demonstrates that Spyglass can leveraggroyiding efficient metadata search in large-scale stor-
file metadata properties to improve how files are manage systems is a challenge. While a number of commer-
aged in large-scale storage systems. cial file metadata search systems exist today [4,14,17,
This remainder of this paper is organized as follows.21, 30], these systems focus on smaller scaes,(ip to
Section 2 provides additional metadata search motivatiofens of millions of files) and are often too slow, resource
and background. Section 3 presents the Spyglass desigiftensive, and expensive to be effective for large-scale
Our prototype is evaluated in Section 4. Related work issystems. To be effective at large scales, file metadata
discussed in Section 5, with future work and conclusionssearch must provide the following:
in Section 6. 1) Minimal resource requirements.Metadata search
should not require additional hardware. It should be em-
bedded within the storage system and close to the files it
indexes while not degrading system performance. Most

existing systems require dedicated CPU, memory, and

This section describes and motivates the use of file metay;sk hardware making them expensive and hard to de-
data search and includes a discussion of real-world querkﬂoy and Iimitir,19 their scalability

and metadata characteristics.

2 Background

2) Fast metadata collectionMetadata changes must be
periodically collected from millions to billions of files
2.1 File Metadata without exhausting or slowing the storage system. Ex-
isting crawling methods are slow and can tax system re-
File metadata, such as inode fieldsg(, size, owner, sources. Hooks to notify systems of file changes can add
timestampsegtc), generated by the storage system andoverhead to important data paths.
extended attribute®(g.,document title, retention policy, 3) Fast and scalable index search and updaearches
backup datesgtc), generated by users and applications,must be fast, even as the system grows, or usability may

| File Management Question | Metadata Search Query |

Which files can | migrate to tape? size > 50 GB, atime > 6 nont hs.

How many duplicates of this file are in my home directoryP owner =j ohn, datahash = 0xE431, path =/ hone/ j ohn.
Where are my recently modified presentations? owner =j ohn, type = (ppt | keynot e), mtime < 2 days.
Which legal compliance files can be expired? retention time = expi r ed, mtime > 7 years
Which of my files grew the most in the past week? Top 100 wheresize(today) > size(1 week ago)pwner =j ohn.
How much storage do these users and applications consyme? Sumsize whereowner =j ohn, type = dat abase

Table 1: Use case examples. Metadata search use cases collected from our user surveyhigh-level questions being addressed
are on the left. On the right are the metadata attributes gei@arched and example values. Users used basic inode rtetada
well as specialized extended attributes, such as legahtiete times. Common search characteristics include miel@tributes,
localization to part of the namespace, and “back-in-time'asch.

suffer. Updates must allow fast periodic re-indexing of | Data Set Description # of Files | Capacity
metadata. However, existing systems typically rely on | Web | web & wikiserver | 15million | 1.28TB
general-purpose relational databases (DBMSs) to index| EN9 build space | 60million | 30GB

metadata. For example, Microsoft's enterprise search in- Home | home directories | 300milion | 76.78 T8

dexes metadata in their Extensible Storage Engine (ESE)Rble 2: Metadata traces collected. The small server capacity of
database [30]. Unfortunately, DBMSs often use heavy-the Eng trace is dug to the majority of the files being smalt@®u
weight locking and transactions that add overhead evefCde files: 99% of files are less than 1 KB.

when disabled [43]. Additionally, their designs make
significant trade-offs between search and update perfor{ Attribute | Description || Attribute | Description
mance [1]. DBMSs also assume abundant CPU, mem-| inumber | inode number || owner | file owner

ory, and disk resources. Although standard DBMSs have path fl.J” path name size file slze
benefited from decades of performance research and opt ext file extension ctime | change time
L . .) type file or directory atime access time
timizations, such as vertical partitioning [23] and materi mtime | modification time hlink hard link #

alized views, their designs are not a perfect fit for meta—T ble 3 Aftributes used. W vzed the fields in the inod
data search. This is not a new concept; the DBMS com- 2P'€ o Alributes used. We analyzed the Tields in the inode

. structure and extractedxt values frompath.
munity has argued that general-purpose DBMSs are not a

“one size fits all solution” [9, 42, 43], instead saying that o
application-specific designs are often best. Search Characteristics.From our survey, we observed

4) Easy to use search interfaceMost systems export three important metadata search characteristics. First,
Y y b over 95% of searches includedultiple metadata at-

simple search APIs. However, recent research [3] ha"Eributesto refine search results; a search on a single at-

shown that specially designed interfaces that can pro; . ,
. . oo tribute over a large file system can return thousands or

vide an expressive and easy to use query capabilities can - . :
reatly improve search experience even millions of results, which users do not want fto sift

9 ' through. Second, about 33% sfarches were localized

5) Secure search resultsSearch results must not allow part of the namespace, such as a home or project di-

users to find or access restricted files [10]. Existing SYStectory. Users often have some idea of where their files

tems either ignore security or enforce it at a significanty;e gng a strong idea of where they are not; localizing

cost to performance. the search focuses results on only relevant parts of the

We designed Spyglass to address these challenges ftamespace. Third, about 25% of the searches that users

large-scale storage systems. Spyglass is specially dgleemed most importarsearched multiple versionsf

signed to exploit metadata search properties to achievgetadata. Users use “back-in-time” searches to under-

scale and performance while being embedded within thetand file trends and how files are accessed.

storage system. Spyglass focuses on crawling, updatinggetadata Characteristics. We collected metadata

and searching metadata; interface and security designghapshot traces from three storage servers at NetApp.

are left to future work. Our traces—Web, Eng, and Home—are described in Ta-
ble 2. Table 3 describes the metadata attributes that we
analyzed. NetApp servers support extended attributes,

2.3 Metadata Search Properties though they were rarely used in these traces. We found
two key properties in these traces: metadatadpesial

To understand metadata search properties, we analyzéecality and highlyskewed distributionef values.

results from our user survey and real-world metadata Spatial locality means that attribute values are clus-

shapshottraces collected from storage servers at NetApgered in the namespacee(, occurring in relatively few

We then used this analysis to guide our Spyglass desigrdirectories). For exampl¢,ohn'’s files reside mostly in

SN J of files have one of the top 28t andsize combinations.
In Figure 2(c), file percentages for corresponding ranks
/é) Cé \‘\@ /é) are at least an order of magnitude lower than in the

‘ b ‘ ‘ ‘ other two graphs. This means, for example, that there
. . .) are many files withowner j ohn and many files with

(@) Locality Ratio=54% (b) Locality Ratio=38% ext pdf , but there are often over an order of magnitude
Figure 1: Examples of locality ratio. Directories that recur- fewer files withbothowner j ohn andext pdf .
sively contain thext attribute valueht m are black and gray. These distribution properties show that multi-attribute
The black directories contain the value. The locality ratiext searches will significantly reduce the number of query
valueht ml is 54% (= 7/13) in the first tree and 38%< 5/13) g 1ts. Unfortunately, most DBMSs rely on attribute
!nthe second tree. The _/alueht_fm has better spatial locality value distributions (also known as selectivity) to choose
in the second tree than in the first one. S

a query plan. When distributions are skewed, query

the/ hone/ j ohn sub-tree, not scattered evenly acrossPlans often require extra data processing [28]; for ex-
the namespace. Spatial locality comes from the way tha@MPle, they may retrieve all gfohn’s files to find the
users and applications organize files in the namespacfW that arej ohn’s pdf files or vice-versa. Our anal-
and has been noted in other file system studies [2, 25)/SiS shows fchat query execution shogld utilize attr!bute
To measure spatial locality, we use an attribute value'y'@lues’ spatial locality rather than their frequency distr
locality ratio: the percent of directories that recursively Putions. Spatial locality provides a more effective way
contain the value, as illustrated in Figure 1. A directory!© €xecute a query because it is more selective and can
recursively contains an attribute value if it or any of its Petter reduce a query’s search space.

sub-directories contains the value. The figure on the right

has a lower locality ratio because tbt attribute value

ht m is recursively contained in fewer directories. Ta-
ble 4 shows the locality ratios for the 32 most frequently
occurring values for various attributesx¢, size, owner,

3 Spyglass Design

Spyglass uses several novel techniques that exploit the
metadata search properties discussed in Section 2 to pro-

ctime, mtime) in each trace. Locality ratios are less than . ;
1% for all attributes, meaning that 99% of directories dov'.de fa_st, scal_able sear Ch. n Iarg_e_—scale st_orage systems.
! First, hierarchical partitioningpartitions the index based

not recursively contain the value. We expect extended at-

tributes to exhibit similar properties since they are often®" the namespace, preserving spatial locality |n.the index
tied to file type and owner attributes. and allowing fine-grained index control. Secosijna-

Utilizing spatial locality can help prune a query’s ture files[13] are used improve search performance by

search space by identifying only the parts of the namesI_everagmg locality to identify only the partitions thakar

pace that contain a metadata value, eliminating a Iargéelevant toa query. Thwdqartmon versioningversions
Index updates, which improves update performance and

number of files to search. Unfortunately, most general- llows “back-in-time” search of past metadata versions
purpose DBMSs treat path names as flat string attributes,. . P '
inally, Spyglass utilizes storage systems snapshots to

making it difficult for them to utilize this information, in- crawl only the files whose metadata has changed, pro-
stead typically requiring them to consiceait files for a viding fast collection of metadata changes. Spyglass re-

search no matter its locality. . o :
Metadata values also have highly skewedS'deS within the storage system and consists of two ma-

frequencies—their popularity distributions are asym—Jor components, shown in Figure 3: the Spyglass index,

metric, causing a few very popular metadata values td/vhmh stores metadata and serves queries, and a crawler

account for a large fraction of all total values. This that extracts metadata from the storage system.

distribution has also been observed in other metadata

studies [2,11]. Figures 2(a) and 2(b) show the distri-3 1 Hjerarchical Partitioning

bution of ext andsize values from our Home trace on

a log-log scale. The linear appearance indicates thafo exploit metadata locality and improve scalability, the
the distributions are Zipf-like and follow the power law Spyglass index is partitioned into a collection of separate
distribution [40]. In these distributions, 80% of files smaller indexes, which we call hierarchical partitioning.
have one of the 20 most populakt or size values, Hierarchical partitioning is based on the storage system’s
while the remaining 20% of the files have thousands ofnamespace and encapsulates separate parts of the names-
other values. Figure 2(c) shows the distribution of thepace into separate partitions, thus allowing more flexible,
Cartesian producti.€., the intersection) of the top 20 finer grained control of the index. Similar partitioning
ext andsize values. The curve is much flatter, which strategies are often used by file systems to distribute the
indicates a more even distribution of values. Only 33%namespace across multiple machines [35, 44].

ext size uid ctime mtime

Web | 0.000162% —0.120% 0.0579% —0.177%| 0.000194% — 0.0558% 0.000291% — 0.0105% 0.000388% — 0.007209
Eng 0.00101% — 0.264%| 0.00194% — 0.462% 0.000578% — 0.137%| 0.000453% — 0.0103% 0.000528% — 0.0578%

Home | 0.000201% —0.491% 0.0259% —0.923%| 0.000417% —0.623%| 0.000370% —0.128%| 0.000911% — 0.0103%,

Table 4: Locality ratios of the 32 most frequently occurring attribute values. All locality ratios are well below 1%, which means
that files with these attribute values are recursively corgd in less than 1% of directories.

10 10 10
g 01 3 01 3 01
1] 1] 1]
Q@ Q@ Q@
[ini 0.001 [ini 0.001 [ini 0.001
S G G
g le05 g le-05 g le05
£ £ £
2 le07 2 le07 2 le07

t, Si
16-09 16-09 1e-09 (ext, size)
1 10 100 1000 10000100000 1 10 100 1000 10000100000 1 10 100 1000 10000100000
Rank of ext Rank of size Rank of (ext, size)
@) (b) (c)

Figure 2: Attribute value distribution examples. A rank of 1 represents the attribute value with the highestddlunt. The linear

curves on the log-log scales in Figures 2(a) and 2(b) indéaaZipf-like distribution, while the flatter curve in Figu2éc) indicates
a more even distribution.

index__ Spyglass| Storage _solqtion _u_sually encod_es pathnames as ﬂaft strings,_mak-
S \ system ing it oblivious to the hierarchical nature of file organiza-
Query ! Partitions ! tion r;':md reqhuirifnghit to consider the ﬁnt:crle namesga:)ceff?r
! I | each search. If the DBMS stores the files sorted by file
Results : :4_ name, it can improve locality and reduce the fraction of
! (Version n) | the index table that must be scanned; however, this ap-
‘---*’ - proach can still result in performance problems for index
C Cafhe) (_crawter updates, and does not encapsulate the hierarchical rela-
_‘/ tionship between files.
L) Spyglass partitions are kept small, on the order of

100,000 files, to maintain locality in the partition and to
Figure 3: Spyglass overview. Spyglass resides within the stor- ensure that each can be read and searched very quickly.
age system. The crawler extracts file metadata, which getSince partitions are stored sequentially on disk, searches
stored in the index. The index consists of a number of pamsti can ysually be satisfied with only a few small sequential
and versions, all of which are managed by a caching system. disk reads. Also, sub-trees often grow at a slower rate
than the system as a whole [2, 25], which provides scal-
Each of the Spyglass partitions is stored sequentiallyability because the number of partitions to search will
on disk, as shown in Figure 4. Thus, unlike a DBMS, often grow slower than the size of the system.
which stores records adjacently on disk using their row We refer to each partition assab-tree partition the
or column order, Spyglass groups records nearby in th&pyglass index is a tree of sub-tree partitions that reflects
namespace together on disk. This approach improvethe hierarchical ordering of the storage namespace. Each
performance since the files that satisfy a query are oftepartition has a maipartition index in which file meta-
clustered in only a portion of the namespace, as showdata for the partition is store@artition metadatawhich
by our observations in Section 2. For example, a searckeeps information about the partition; and pointers to
of the storage system fprohn's . ppt files likely does child partitions. Partition metadata includes informatio
not require searching sub-trees such as other user’'s honused to determine if a partition is relevant to a search and
directories or system file directories. Hierarchical parti information used to support partition versioning.
tioning allows only the sub-trees relevant to a search to The Spyglass index is stored persistently on disk; how-
be considered, thereby enabling reduction of the searchver, all partition metadata, which is small, is cached
space and improving scalability. Also, a user may choosén-memory. Apartition cachemanages the movement
to localize the search to only a portion of the names-of entire partition indexes to and from disk as needed.
pace. Hierarchical partitioning allows users to controlWhen afile is accessed, its neighbor files will likely need
the scope of the files that are searched. A DBMS-basetb be accessed as well, due to spatial locality. Paging en-

aggregation and trend queries without having to process

/1/ the entire partition index. These statistics are computed
home proj usr as files are being indexed. Version vectorwhich is de-

' Y '\ } scribed in Section 3.2, manages partition versions. Sig-

fim SCISMEIANNSIEBIE, | include nature files are used to determine if the partition contains

files relevant to a query.

\ lw ~——
Signature files [13] are bit arrays that serve as compact

| @ Spyglass index summaries of a partition’s contents and exploit metadata
v On disk locality to prune a query’s search space. A common ex-
B B T [[T] layout ample of a signature file is the Bloom Filter [8]. Spy-

glass can determine whether a partitimay index any
files that match a query simply by testing bits in the sig-
nature files. A signature file and an associated hashing
function are created for each attribute indexed in the par-
tition. All bits in the signature file are initially set to zer

tire partition indexes allows metadata for all of these filesAS files are indexed, their attribute values are hashed to
to be fetched in a 5ing|e’ small Sequentia| read. This con@ bit pOSition in the attribute’s Signature ﬁle, which is set
cept is similar to the use of embedded inodes [15], tof® one. To determine if the partition indexes files relevant
store inodes adjacent to their parent directory on disk. 0 & query, each attribute value being searched is hashed
In general, Spyglass search performance is a functiognd its bit position is tested. The partition needs to be
of the number of partitions that must be read from disk.searcheanlyif all bits tested are set to one. Due to spa-
Thus, the partition cache’s goal is to reduce disk accessd#@! locality, most searches can eliminate many partitions
by ensuring that most partitions searched are already ineducing the number of disk accesses and processing a
memory. While we know of no studies of file system guery must perform.
query patterns we believe that a simple LRU algorithm Due to collisions in the hashing function that cause
is effective. Both web queries [5] and file system ac-false positives, a signature file determines only if a par-
cess patterns [25] exhibit skewed, Zipf-like popularity titton may contain files relevant to a query, potentially
distributions, suggesting that file metadata queniy causing a partition to be searched when it does not con-
exhibit similar popularity distributions; this would mean tain any files relevant to a search. However, signature
that only a small subset of partitions will be frequently files cannot produce false negatives, so partitions with
accessed. An LRU algorithm keeps frequently accessetglevant files will never be missed. False-positive rates
partitions in-memory, ensuring high performance forcan be reduced by varying the size of the signature or
common queries and efficient cache utilization. changing the hashing function. Increasing signature file
Partition Indexes. Each partition index must provide sizes, which are initially around 2KB, decreases the
fast, multi-dimensional search of the metadata it in-chances of a collision by increasing the total number of
dexes. To do this we use a K-D tree [7], which i&-a bits. This trades off increased memory requirements and
dimensional binary tree, because it provides lightweightJower false positive rates. Changing the hashing function
logarithmic point, range, and nearest neighbor searchllow a bit's meaning and how it is used to be improved.
overk dimensions and allows multi-dimensional searchFor example, consider a signature file for file size at-
of a partition in tens to hundreds of microseconds.tributes. Rather than have each bit represent a single size
However, other index structures can provide additionavalue €.9.,522 bytes), we can reduce false positives for
functionality. For example, FastBit [45] provides high common small files by mapping each 1KB range to a
index compression, Berkeley DB [34] provides trans-single bit for sizes under 1 MB. The ranges for less com-
actional storage, cache-oblivious B-trees [6] improvemon large files can be made more coarse, perhaps using
update time, and K-D-B-trees [38] allow partially in- @ single bit for sizes between 25 and 50 MB.
memory K-D trees. However, in most cases, the fast, The number of signature files that have to be tested can
lightweight nature of K-D trees is preferred. The draw- be reduced by utilizing the tree structure of the Spyglass
back is that K-D trees are difficult to update; Section 3.2index to create hierarchically defined signature files. Hi-
describes techniques to avoid continuous updates. erarchical signature files are smaller signatures (roughly
Partition Metadata. Partition metadata contains infor- 100 bytes) that summarize the contents of its partition
mation about the files in the partition, including paths and the partitions below it in the tree. Hierarchical signa-
of indexed sub-trees, file statistics, signature files, andure files are the logical OR of a partition’s signature files
version information. File statistics, such as file countsand the signature files of its children. A single failed test
and minimum and maximum values, are kept to answebpf a hierarchical signature file can eliminate huge parts of

Figure 4: Hierarchical partitioning example. Sub-tree parti-
tions, shown in different colors, index different storagstem
sub-trees. Each partition is stored sequentially on diske T
Spyglass index is a tree of sub-tree partitions.

incremental indexesvhich are illustrated in Figure 5. A
home pml baseline index is a normal partition index that represents
the state of the storage system at tifigeor the time of
‘<m d's""m N '"°'”de the initial update. An incremental index is an index of
o expe"me"'s/ “+ Spyglass metadatachangesetween two points in tim@,_1 and
X ; indexer Tn. These changes are indexed in K-D trees, and smaller
! |@ signature files are created for each incremental index.

I . . .
’ : Y Storing changes differs from the approach used in some

v vy __ —— Y i f o .
N : versioning file systems [39], which maintain full copies
T0 | |10 : 0 | for each version. Changes consist of metadata creations,
=== FEw deletions, and modifications. Maintaining only changes
Baseline Incremental . . .
index indexes requires a minimal amount of storage overhead, resulting

in a smaller footprint and less data to read from disk.

Each sub-tree partition starts with a baseline index, as
shown in Figure 5. When a batch of metadata changes
index contains the changes required to roll query resulviand is receivec_i.aﬂ'l, itis used_to .build increm?mal i”dex,es-
to a new point in time. Each sub-tree partition manages its ve Each partition maf_‘ag‘?s its 'ncrememal 'ndexes_ using a
sion in a version vector. version vector similar in concept to inode logs in the

Elephant File System [39]. Since file metadata in differ-
the index from the search space, preventing every partient parts of the file system change at different rates [2,
tion’s signature files from being tested. Hierarchical sig-25], partitions may have different numbers and sizes of
nature files are kept small to save memory at the cost ofhcremental indexes. Incremental indexes are stored se-
increased false positives. quentially on disk adjacent to their baseline index. As a
result, updates are fast because each partition writes its
changes in a single, sequential disk access. Incremen-
tal indexes are paged into memory whenever the base-

Spyglass improves update performance and enabldiie indexis accessed, increasing the amount of data that
“pack-in-time” search using a technique called parti-must be read when paging in a partition, though not typi-
tion versioning that batches index updates, treating eacfally increasing the number of disk seeks. As aresult, the
batch as a new incremental index version. The motivaoverhead of versioning on overall search performance is
tion for partition versioning is two-fold. First, we wish usually small.
to improve index update performance by not having to Performing a “back-in-time” search that is accurate as
modify existing index structures. In-place modification of time T, works as follows. First, the baseline index
of existing indexes can generate large numbers of disks searched, producing query results that are accurate as
seeks and can cause partition index structures to beconw# Ty. The incremental indexeF, throughT, are then
unbalanced. Second, back-in-time search can help arsearched in chronological order. Each incremental in-
swer many important storage management questions thaex searched produces metadata changes that modify the
can track file trends and how they change. search results, rolling them forward in time, and even-
Spyglass batches updates before they are applied @sally generating results that are accurate a$,ofFor
new versions to the index, meaning that the index mayexample, consider a query for files wittlwner j ohn
be stale because file modifications are not immediatelyhat matches two filess; andF,, atTyp. A search of in-
reflected in the index. However, batching updates im-cremental indexes & may yield changes that caubg
proves index update performance by eliminating manyto no longer match the querg.g.,no longer owned by
small, random, and frequent updates that can thrash theohn), and a later search of incremental indexe3at
index and cache. Additionally, from our user survey, may yield changes that cause fitgto match the query
most queries can be satisfied with a slightly stale index(i.e.,now owned byj ohn). The results of the query are
It should be noted that partition versioning does not re-F,; andF;, which is accurate as df,. Because this pro-
quire updates to be batched. The index can be updated tess is done in memory and each version is relatively
real time by versioning each individual file modification, small, searching through incremental indexes is often
as is done in most versioning file systems [39, 41]. very fast. In rolling results forward, a small penalty is
Creating Versions. Spyglass versions each sub-tree par-paid to search the most recent changes; however, updates
tition individually rather than the entire index as a whole are much faster because no data needs to be copied, as
in order to maintain locality. A versioned sub-tree par-is the case in CVFS [41], which rolls version changes
tition consists of two components:baseline indexand backwards rather than forwards.

Figure 5: Versioning partitioning example. Each sub-tree
partition manages its own versions. A baseline index is a nor
mal partition index from some initial timgyTEach incremental

3.2 Partition Versioning

Managing Versions. Over time, older versions tends '"Odef"ﬂps"m '“Odef"%mshm?
. OC| OCl

to decrease in value and should be removed to re

duce search overhead and save space. Spyglass pi

vides two efficient techniques for managing partition %2 Bocks block 2 bock 8
versions:version collapsingandversion checkpointing

Version collapsing applies each partition’s incremental Plock4 block5 block6 block4 blockS block 7

index changes to its baseline index. The result is a singl: [*Inode 50 | < Inode 50

(mtime changed)

baseline for each partition that is accurate as of the mos.

recent incremental index. Collapsing is efficient becausérigure 6: Snapshot-based metadata collection. In snapshot 2,

all original index data is read sequentially and the newplock 7 has changed since snapshot 1. This change is propa-
baseline is written sequentially. Version checkpointingdated up the tree. Because block 2 has not changed, we do not
allows an index to be saved to disk as a new copy to pre"€€d to examine it or any blocks below it.

serve an important landmark version of the index.

We describe how collapsing and checkpointing can bechanged, then it does not need to be crawled. If this block

used with an example. During the day, Spyglass is UPis an indirect block, then no blocks that it points to need

datgd rlourly, .cre.atln”g hew versions every hour, thus al’to be crawled either because block changes will propa-
lowing “back-in-time” searches to be performed at per-

h larit the d At th d of hd gate all the way back up to the inode file’s root block. As
nour granuiarity over the day. € enc of each day,, result, the Spyglass crawler can identify just the data
incremental versions are collapsed, reducing space ove,

head at the cost of prohibiting hour-by-hour searchingBIOCks that have changed and crawl only their data. This
over the last day. Also. at the end of each day, approach greatly enhances scalability because crawl per-

a COPY,rmance is a function of the number of files that have

of the collapsed index is checkpointed to disk, represent(-:hanged rather than the total number of files.

ing the storage system state at the end of each day. At .
the end of each week, all but the latest daily checkpoints SPYdlass is not dependent on snapshot-based crawl-

are deleted: and at the end of each month, all but the latNd: though it provides benefits compared to alterna-
est weekly checkpoints are deleted. This results in veriVe approaches. Periodically walking the file system
sions of varying time scales. For example, over the pasta" Peé extremely slow because each file must be tra-
day any hour can be searched, over the past week aﬁgprsed. Moreover, traversal can utilize significant sys-
day can be searched, and over the past month any wedgm resources and alter file access times on which file
can be searched. The frequency for index collapsing anf@ches depend. Another approach, file system event noti-

checkpointing can be configured based on user needs afigations €. g, i noti fy [22]), requires hooks into crit-
space constraints. ical code paths, potentially impacting performance. A

changelog, such as the one used in NTFS, is another al-
) ternative; however, since we are not interested in every
3.3 Collecting Metadata Changes system event, a snapshot-based scheme is more efficient.

The Spyglass crawler takes advantage of NetApp

SnapshoTt'vI technology in the NetApp WAFL® file
system [19] on which it was developed to quickly collect 3.4 Distributed Design
metadata changes. Given two snapshts; and Ty,
Spyglass calculates the difference between them. Thi®ur discussion thus far has focused on indexing and
difference represents all of the file metadata changes berawling on a single storage server. However, large-scale
tweenT,_1 andT,. Because of the way snapshots arestorage systems are often composed of tens or hundreds
created, only the metadatadfangediles is re-crawled. of servers. While we do not currently address how to dis-
All metadata in WAFL resides in a single file called tribute the index, we believe that hierarchical partitiani
theinode filg which is a collection of fixed length inodes. lends itself well to a distributed environment because the
Extended attributes are included in the inodes. PerformSpyglass index is a tree of partitions. A distributed file
ing an initial craw! of the storage system is fast becausesystem with a single namespace can view Spyglass as
it simply involves sequentially reading the inode file. a larger tree composed of partitions placed on multiple
Snapshots are created by making a copy-on-write clonservers. As a result, distributing the index is a matter of
of the inode file. Calculating the difference between twoeffectively scaling the Spyglass index tree. Also, the use
snapshots leverages this mechanism. This is shown iof signature files may be effective at routing distributed
Figure 6. By looking at the block numbers of the inode queries to relevant servers and their sub-trees. Obvipusly
file’'s indirect and data blocks, we can determine exactlythere are many challenges to actually implementing this.
which blocks have changed. If a block’s number has notA complete design is left to future work.

4 Experimental Evaluation core AMD Opteron machine with 8 GB of main memory
running Ubuntu Linux 7.10. All index files were stored
We evaluated our Spyglass prototype to determine hoven a network partition that accessed a high-end NetApp
well our design addresses the metadata search challengéls server over NFS.
described in Section 2 for varying storage system sizes. We also evaluated the performance of two popular re-
To do this, we first measured metadata collection speedational DBMSs, PostgreSQL and MySQL, which serve
index update performance, and disk space usage. Was relative comparison points to DBMS-based solutions
then analyzed search performance and how effectivelyised in other metadata search systems. The goal of our
index locality is utilized. Finally, we measured partition comparison is to provide some context to frame our Spy-
versioning overhead. glass evaluation, not to compare performance to the best
Implementation Details. Our Spyglass prototype was Possible DBMS setup. We compared Spyglass to an
implemented as a user-space process on Linux. An RP@ndex-only DBMS setup, which is used in several com-
based interface to WAFL gathers metadata changes usir§ercial metadata search systems, and also tuned various
our snapshot-based crawler. Our prototype dynamicall@ptions, such as page size, to the best of our ability. This
partitions the index as it is being updated. As files andsetup is effective at pointing out several basic DBMS
directories are inserted into the index, they are placedperformance problems. DBMS performarwanbe im-
into the partition with the longest pathname matck.(Proved through the techniques discussed in Section 2;
the pathname match farthest down the tree). New pahowever, as stated earlier, they do not completely match
titions are created when a directory is inserted and almetadata search cost and performance requirements.
matching partitions are full. A partition is considered Our Spyglass prototype indexes the metadata at-
full when it contains over 100,000 files. We use 100,000tributes listed in Table 3. Our index-only DBMSs in-
as the soft partition limit in order to ensure that parti- clude a base relation with the same metadata attributes
tions are small enough to be efficiently read and writtenand a B+-tree index for each. Each B+-tree indexes ta-
to disk. Using a much smaller partition size will often ble row ID. An index-only design reduces space usage
increase the number of partitions that must be accessegPmpared to some more advanced setups, though it has
for a query; this incurs extra expensive disk seeks. Usslower search performance. In all three traces, cache
ing a much larger partition size decreases the number d¥izes were configured to 128 MB, 512MB, and 2.5GB
partitions that must be accessed for a query; however itor the Web, Eng, and Home traces, respectively. These
poorly encapsulates spatial locality, causing extra aata tSizes are small relative to the size of their trace and cor-
be read from disk. In the case of symbolic and hard linksfespond to about 1 MB for every 125,000 files.
multiple index entries are used for the file.

During the update process, partitions are buffered in- ~ 3%° igg I
memory and written sequentially to disk when full; each o0 [1 = =) 3
is stored in a separate file. K-D trees were implemented £ 200 % 200 |- T
using | i bkdt ree++ [27]. Signature file bit-arrays £ 150 E 0]
are about 2 KB, buhierarchicalsignature files are only - oF
100 bytes, ensuring that signature files can fit within 0 O % 60 80 100
our memory constraints. Hashing functions that allowed 0 zﬁ"e:‘zwﬁgnsfo 100 Files (Millions)
each signature file’s bit to correspond to a range of values Mo ME a ShE e
were used for file size and time attributes to reduce false S8 e SM2% e SB2% e
positive rates. When incremental indexes are created, (a) Baseline (b) Incremental: 2%, 5%,
they are appended to their partition on disk. Finally, we and 10% changes from base-
implement a simple search API that allows point, range, line
topk, and aggregation searches. We plan to extend thisigure 7: Metadata collection performance. We compare
interface as future work. Spyglass’s snapshot-based crawler (SB) to a straw-mauglesi

Experimental Setup. We evaluated performance us- (SM). Our crawler has good scalability; performance is adun

ing our real-world metadata traces described in Table otion of the number of changed files rather than system size.
These traces have varying sizes, allowing us to exam-

ine scalability. Our Web and Eng traces also have in‘Metadata Collection Performance. We first evaluated
cremental snapshot traces of daily metadata changes four snapshot-based metadata crawler and compared it
several days. Since no standard benchmarks exist, w® a straw-man approach. Fast collection performance
constructed synthetic sets of queries, discussed later impacts how often updates occur and system resource
this section, from our metadata traces to evaluate seardaltilization. Our straw-man approach performs a paral-
performance. All experiments were performed on a dualelized walk of the file system usingt at () to ex-

2d 103

14h 1gh 110 100 7 =
250000 - 50m 7m Slm .
2h 5s 225 33s a I
25000 - S e
D 48m 45m 265 kS
GEJ 2500 — — EE) 10
E g
o 250 - ©
g [0}
ko] Q
=3 8
=) 25 — n 1
0 T
0 T T T Web Eng Home
Web Eng Home B spyglass PostgreSQL Table MySQL Table
M spyglass PostgreSQL Table MySQL Table PostgreSQL Indexes MySQL Indexes

PostgreSQL Index MySQL Index
]) .) Figure 9: Space overhead. The index disk space requirements
Figure 8: Update performance. The time required to build an shown on a log-scale. Spyglass requires just 0.1% of the Web

initial baseline index shown on a log-scale. Spyglass wgglat and Home traces and 10% of the Eng trace to store the index.
quickly and scales linearly because updates are writterigh d

mostly sequentially. .
more; however, approaches such as cache-oblivious B-

trees [6] may be able to reduce this gap.

tract metadata. Figure 7(a) shows the performance of &pace Overhead.Figure 9 shows the disk space usage
baseline crawl of all file metadata. Our snapshot basegyy 3]| three of our traces. Efficient space usage has two
crawler is up to 16 faster than our straw-man for 100 primary benefits: less disk space taken from the storage
million files because our approach simply scans the insystem and the ability to cache a higher fraction of the
ode file. As a result, a 100 million file system is crawled jndex. Spyglass requires less than 0.1% of the total disk
in less than 20 minutes. space for the Web and Home traces. However, it requires

Figure 7(b) shows the time required to collect incre-about 10% for the Eng trace because the total system size
mental metadata changes. We examine systems with 2%s low due to very small files. Spyglass requires about 50
5%, and 10% of their files changed. For example, abytes per file across all traces, resulting in space usage
baseline of 40 million files and 5% change has 2 millionthat scales linearly with system size. Space usage in Spy-
changed files. For the 100 million file tests, each of ourglass is 5—8x lower than in our references DBMSs be-
crawls finishes in under 45 minutes, while our straw-mancause they require space to store the base table and index
takes up to 5 hours. Our crawler is able to crawl the inodestructures. Figure 9 shows that building index structures
file at about 70,000 files per second. Our crawler effeccan more the double the total space requirements.

tively scales because we incur only a fractional overheagearch Performance.To evaluate Spyglass search per-
as more files are crawled; this is due to our crawling onlyformance, we generated sets of queries derived from real-
changed blocks of the inode file. world queries in our user study; there are, unfortunately,
Update Performance. Figure 8 shows the time re- no standard benchmarks for file system search. These
quired to build the initial index for each of our metadata query sets are summarized in Table 5. Our first set is
traces. Spyglass requires about 4 minutes, 20 minute®ased on a storage administrator searching for the user
and 100 minutes for the three traces, respectively. Thesand application files that are consuming the most space
times correspond to a rate of about 65,000 files per sede.qg.,total size ofi ohn’s . virdk files)—an example of
ond, indicating that update performance scales linearlya simple two-attribute search. The second set is an ad-
Linear scaling occurs because updates to each partitioministrator localizing the same search to only part of
are written sequentially, with seeks occurring only be-the namespace, which shows how localizing the search
tween partitions. Incremental index updates have a simehanges performance. The third set is a storage user
ilar performance profile because metadata changes asearching for recently modified files of a particular type
written in the same fashion and few disk seeks are addedh a specific sub-tree, demonstrating how searching many
Our reference DBMSs take betweer &nd 44x longer attributes impacts performance. Each query set consists
to update because DBMSs require loading their base taef 100 queries, with attribute values randomly selected
ble and updating index structures. While loading the tafrom our traces. Randomly selecting attribute values
ble is fast, updating index structures often requires seeksieans that our query sets loosely follow the distribution
back to the base table or extra data copies. As a resulgf values in our traces and that a variety of values are
DBMS updates with our Home trace can take a day owsed.

Set Search Metadata Attributes

Setl Which user and application files consume the most space? Sumsizes for files usingowner andext.

Set 2 | How much space, in this part of the system, do files from quergrisume? Use query 1 with an additional directopgath.

Set3 What are the recently modified application files in my homediory? Retrieve all files usingntime, owner, ext, andpath.

Table 5: Query Sets. A summary of the searches used to generate our evaluation gats.

23h

1000 10000 — 48m 100000 — 8h M gh 7h
3m 3m 26m 25m 13s 4m 29m 16m 3h
59s 2m 59s 2m 2m 48s 44s 14m 28s 24s 36s | Om
= im 208 i M 5510000 20m 10s
) 465 1000 55s
© 100 4 51s
£ 1000
[
- 100
100
§ 10
O 10 10 o 7.1s
14 14 14
T T T T T T T T T
B Spyglass Setl Set 2 Set3 Setl Set 2 Set 3 Set1l Set 2 Set 3
PostgreSQL
MySQL Web Eng Home

Figure 10: Query set run times. The total time required to run each set of queries. Each dabisled 1 through 3 and is clustered
by trace file. Each trace is shown on a separate log-scale &pgglass improves performance by reducing the searctespae
small number of partitions, especially for query sets 2 andt3ich are localized to only a part of the namespace.

Figure 10 shows the total run times for each set ofdisk accesses, and can exploit locality in the workload to
queries. In general, query set 1 takes Spyglass the longegteatly improve cache utilization.

to complete, while query sets 2 and 3 finish much faster. sjng the results from Figure 10, we calculated query
This performance dlf_ference is caused by the ability Ofthroughput, shown in Table 6. Query throughput (queries
sets 2 and 3 to localize the search to only a part of thgyer second) provides a normalized view of our results
namespace by including a path with the query. Spyglasgng the query loads that can be achieved. Spyglass
is able to search only files from this part of the storage,chieves throughput of multiple queries per second in all
system by using hierarchical partitioning. As a result,p ¢ two cases; in contrast, the reference DBMSs do not
the search space for these queries is bound to the sizghieve one query per second in any instance, and, in
of the sub-tree, no matter how large the storage systemyany cases, cannot even sustain one query per five min-
Because the search space is already small, using many gfres. Figure 11 shows an alternate view of performance;
tributes has little impact on performance for set 3. Query, cumulative distribution function (CDF) of query exe-
set 1, on the other hand, must consider all partitions and,tion times on our Home trace allowing us to see how
tests each partition’s signature files to determine whichy5cp query performed. In query sets 2 and 3, Spyglass
to search. While many partitions are eliminated, thereinishes all searches in less than a second because local-
are more partitions to search than in the other query set$,a4 searches bound the search space. For query set 1,
which accounts for the longer run times. we see that 75% of queries take less than one second,
indicating that most queries are fast and that a few slow
o . DBMS f | Soval queries contribute significantly to the total run times in
ur compllcms{otn stgerr] orm closer to FR’]Q assFigure 10. These queries take longer because they must
on our smaflest race, VVeD, nowever we see e gap,q many partitions from disk, either because few were

widen as the system SiZ€ Increases. In fact, Spyglass[Freviously cached or many partitions are searched.
over four orders of magnitude faster for query sets 2 an

3 on our Home trace, which is our largest at 300 mil-'ndex Locality. We now evaluate how well Spyglass ex-
lion files. The large performance gap is due to severaP!0its spatial locality to improve query performance. We
reasons. First, our DBMSs consider files from all partsgenerated another set of queries, based on query 1 from
of the namespace, making the search space much largé@ble 5, with 500 queries witbwner andext values ran-
Second, skewed attribute value distributions cause oufloMly selected from our Eng trace. We generated similar
DBMSs to process extra data even when there are fe\§uery sets for individuaxt andowner attributes.

results. Third, the DBMSs base tables ignore metadata Figure 12(a) shows a CDF of the fraction of partitions
locality, causing extra disk seeks to find files close in thesearched. Searching more partitions often increases the
namespace but far apart in the table. Spyglass, on themount of data that must be read from disk, which de-
other hand, uses hierarchical partitioning to significantl creases performance. We see that 50% of searches using
reduce the search space, performs only small, sequentiplst theext attribute reference fewer than 75% of par-

System Web Eng Home

Setl | Set2 | Set3 | Setl | Set2 | Set3 | Setl | Set2 | Set3
Spyglass 238 | 212 | 714 | 0.315| 141 | 189 | 0.05 | 154 | 14.1
PostgreSQL| 0.418 | 0.418 | 0.94 | 0.062 | 0.034 | 0.168 | 0.003 | 0.001 | 0.003
MySQL 0.714 | 0.68 | 0.063| 0.647 | 0.123 | 0.115| 0.019 | 0.004 | 0.009

Table 6: Query throughput. We use the results from Figure 10 to calculate query througltgueries per second). We find that
Spyglass can achieve query throughput that enables fasiaizt search even on large-scale storage systems.

%] 1 %] 1 [%] 1

£ 08 - £ 08 [£ 08

g)/ e g

Cos6 ©o06 ©o0.6

o o o

‘5 0.4 ‘5 0.4 1 5 0.4

§ 0.2 § 0.2 § 0.2

O Pt — ‘ L - — ‘ ot ok — ‘ ‘

100msls 5s 10s 25s 100s 100msls 5s 10s 25s 100s 100msls 5s 10s 25s 100s
— Spyglass Postgres MySQL — Spyglass Postgres MySQL — Spyglass Postgres MySQL

Query Execution Time Query Execution Time Query Execution Time

(a) Query set 1. (b) Query set 2. (c) Query set 3.

Figure 11: Query execution times. A CDF of query set execution times for the Eng trace. In Figdré(b) and 11(c), all queries
are extremely fast because these sets include a path ptedicat allows Spyglass to narrow the search to a few partgtio

100

1,

g g / g w‘”’wm
T= 80 > &
‘;% — .g 400 {—o 2 08 P
38 60 F 300 O 0.6 |
52 /j S o /
=8 40 ! & 200 c 0447
o= / = 2 /
©%5 2097 < 100 S 0.2
g S o
0 T B T T = 0 T T L 0 T T T
0 20 40 60 80 100 0 1 2 3 1ms 10ms 100ms 1s 10s
Text. - owner eXU9wner Number of Versions Query Overhead
Percent of Queries
== 1 Version 2 Versions 3 Versions

(a) CDF of sub-tree partition accesses.

£ 100 - Figure 13: Versioning overhead. The figure on the left shows
T 80 — total run time for a set of 450 queries. Each version adds &bou
§ 60| r_ 10% overhead. On the right, a CDF shows per-query over-
&; 20 f heads. Over 50% of queries have an overhead of 5ms or less.
et bE |
é 20§
2 o ‘ ‘ ‘ : are read from disk. Searchirgvner andext attributes
0 20 40 60 80 100 together results in 95% of queries having a cache hit per-
= ext owner " ext/owner

Percent of Queries cgqtage of 95% or _better due to the high(_ar locality ex-
hibited by multi-attribute searches. The higher locality
(b) CDF of partition cache hits. causes repeated searches in the sub-trees where these
Figure 12: Index locality. A CDF of the number of partitions ~ files reside and allows Spyglass to ignore more non-
accessed and the number of accesses that were cache hits foelevant partitions.
our query set. Searching multiple attributes reduces teller \/ersjioning Overhead. To measure the search overhead
of partition accesses and increases cache hits. added by partition versioning, we generated 450 queries
based on query 1 from Table 5 with values randomly se-
titions. However, 50% of searches using bettt and lected from our Web trace. We included three full days
owner together reference fewer than 2% of the parti-of incremental metadata changes, and used them to per-
tions, since searching more attributes increases the Iderm three incremental index updates. Figure 13 shows
cality of the search, thereby reducing the number of parthe time required to run our query set with an increasing
titions that must be searched. Figure 12(b) shows a CDlRumber of versions; each version adds about a 10% over-
of cache hit percentages for the same set of queriehead to the total run time. However, the overhead added
Higher cache hit percentages means that fewer partition® most queries is quite small. Figure 13 also shows, via

a CDF of the query overheads incurred for each versiontaining only a partial inverted index that does not store
that more than 50% of the queries have less than a 5nthe location of every term occurrence. Like Spyglass,
overhead. Thus, itis a few much slower queries that conGLIMPSE partitioned the search space, using fixed size
tribute to most of the 10% overhead. This behavior oc-blocks of the file space, which were then referenced by
curs because overhead is typically incurred when increthe partial inverted index. A tool similar tgr ep was
mental indexes are read from disk, which doesn’t occuused to find exact term locations with each fixed size
once a partition is cached. Since reading extra versionblock. Similarly, Diamond [20] eliminated disk space re-
does not typically incur extra disk seeks, the overheadjuirements by using a mechanism to improve the speed
for the slower queries is mostly due to reading partitionsof brute force searches instead of maintaining an index.

with much larger incremental indexes from disk. A technique called Early Discard allowed files that are
irrelevant to the search to be rejected as early as possi-
5 Related Work ble, helping to reduce the search space. Early Discard

used application-specific “searchlets” to determine when

Spyglass seeks to improve how file systems manag,@ file is irr.elevant Fo a give_n query. _Geometric partition-
growing volumes of data, which has been an importanfng [24] aimed to improve inverted index update perfor-

challenge and an active area of research for over twdn@nce by breaking up the inverted index's inverted lists
decades. A significant amount of work has looked at?y UPdate time. The most recently updated inverted lists
how file systems can improve file naming and organi-"€'e kept_small_and sequentl_al, aIIOW|_ng future updates
zation by leveraging file attributes. The Semantic File!® P€ applied quickly. A merging algorithm created new
System [16] utilized file(attribute value pairs to dy- partitions as the lists grow over time. Query-based par-

namically construct a namespace based on queries rathifoning [31] used a similar approach, though it parti-
than use a standard hierarchical namespace. Virtual doned the inverted index based on file search frequency,
rectories allowed queries to be integrated directly inéo th 2/10Wing index data for infrequently searched files to be
namespace as a directory containing search results. Tifdfloaded to second-tier storage to improve cost.
Hierarchy and Content (HAC) [18] file system looked
as how Semantic File System concepts could be applied .
to a hierarchical namespace, providing users with a ne® Conclusions and Future Work
naming mechanism without requiring them to forgo tra-
ditional hierarchies. These and similar systems [32, 36 As storage systems have become larger, finding and man-
focus on how users name and view files, though they d@ging files has become increasingly difficult. To address
not focus on how files are actually indexed and searchedhis problem we presented Spyglass, a metadata search
thereby potentially limiting their performance and scal- System that improves file management by allowing com-
ability. While Spyglass does not provide higher level plex, ad hoc queries over file metadata. Spyglass in-
naming semantics, it is the first to address the challengtfoduces several novel indexing techniques that improve
of scalable file metadata indexing and search, allowing itnetadata crawling, search, and update performance by
to potentially be used as the underlying indexing methodxploiting metadata properties. Our evaluation shows
for such file systems. that Spyglass has up to 1-4 orders of magnitude faster
Spyglass focuses on how to exploit file metadata propsearch performance then existing designs.
erties to improve search performance and scalability, We plan on improving Spyglass in the future in a num-
though it is not the first to look at how new indexing ber of ways. First, we plan on addressing file security
structures improve file retrieval. Inversion [33] used aby leveraging hierarchical partitioning to help eliminate
general-purpose DBMS as the core file system structuregartitions that the user does not have access to from the
rather than traditional file system inode and data layoutssearch space. Second, we are exploring new interface
Inversion used several PostgreSQL tables to store botAnd query language designs that allow users to ask com-
file metadata and data, allowing the file system to benefiplex queries€.g.,"back-in-time” queries) while remain-
from database transaction and recovery support and alng easy to use. Third, we propose fully distributing Spy-
lowing metadata and data to be queried. Like Spyglasgylass across a cluster by allowing partitions to be repli-
Inversion provides ad hoc metadata query functionalitycated and migrated across machines. Fourth, we will ex-
though it focuses on allowing file systems to leverageplore how partitioning can be improved by using other
database functionality rather than on query performancemetadata attributes to partition the index. Finally, we are
However, a number of new index designs have beerhooking at how Spyglass can be used as the main meta-
proposed to improve various aspects of file systendata store for a storage system, eliminating many of the
search. GLIMPSE [29] reduced disk space requirementspace and performance overheads incurred when used in
compared to a normal full-text inverted index, by main- addition to the storage system’s metadata store.

Acknowledgments [19]
We would like to thank our colleagues in the Storage Syslzo]
tems Research Center and NetApp’s Advanced Technol-
ogy Group for their input and guidance. Also, we thank
Remzi Arpaci-Dusseau, Stavros Harizopoulos, and Jir[21]
Schindler for their early feedback and discussions on thi?zz]
work. Finally, we thank our shepherd Sameer Ajmani
and our anonymous reviewers, whose comments signifi-
cantly improved the quality of this paper. (23]

This work was supported in part by the Depart-
ment of Energy’s Petascale Data Storage Institute undgpy)
award DE-FC02-06ER25768 and by the National Sci-
ence Foundation under award CCF-0621463. We thank®]
the industrial affiliates of the SSRC for their support.

[26]

References

(1]
(2]
(3]

D. J. Abadi, S. R. Madden, and N. Hachem. Column-Stores vs
Row-Stores: How different are they really? $S\GMOD 2008

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
five-year study of file-system metadata.AFAST 2007

S. Ames, C. Maltzahn, and E. L. Miller. QUASAR: Interaumti
with file systems using a query and naming language. Tedhnica
Report UCSC-SSRC-08-03, University of California, SantazC
September 2008.
Apple. Spotlight Server: Stop searching, start find- (30]
ing. http://ww. appl e. conl server/ macosx/
features/spotlight/,2008. (31]
S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossmar an
O. Frieder. Hourly analysis of a very large topical catezsudi
web query log. IrSIGIR 2004

M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel
B. C. Kuszmaul, and J. Nelson. Cache-oblivious streaming B-[33]
trees. InProceedings of the 19th Symposium on Parallel Algo-

[27]

(28]

[29]

(4
(5]

(32]
(6]

rithms and Architectures (SPAA 'Qf)ages 81-92, 2007. (34]
[7] J.L.Bentley. Multidimensional binary search treesdi® asso-

ciative searchingCommunications of the ACM.8(9):509-517,

1975. [35]
[8] B.H.Bloom. Space/time trade-offs in hash coding witlowhble

errors.Communications of the ACM3(7):422—-426, 1970. [36]

[9] E. Brewer. Readings in Database Systenehapter Combining
Systems and Databases: A Search Engine Retrospective. MI'[37
Press, 4th edition, 2005.]
S. Buttcher and C. L. Clarke. A security model for fugt file
system search in multi-user environments FAST 2004

J. R. Douceur and W. J. Bolosky. A large-scale study & fil
system contents. ISIGMETRICS 1999

Enterprise Strategy Groups. ESG Research Reportaggare-
source management market on the launch pad, 2007.

C. Faloutsos and S. Christodoulakis. Signature files:aécess
method for documents and its analytical performance etialua
ACM TolS 2(4), 1984.

Fast, A Microsoft Subsidiary. FAST — enterprise sealtht p:

/1 ww. f ast sear ch. con , 2008.

G. R. Ganger and M. F. Kaashoek. Embedded inodes anitiexpl
groupings: Exploiting disk bandwidth for small files. USENIX
1997

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O'TepJr.
Semantic file systems. BOSP 1991

Google, Inc. Google enterprisiet t p: / / www. googl e. comf
enterprise/, 2008.

B. Gopal and U. Manber. Integrating content-based sxogech-
anisms with hierarchical file systems. @SDI 1999

(10 [38]

[11] 39]

[12]

[13] [40]

[41]

[14] [42]

[15] (43]
[16] (4]
[17]

(18] [45]

D. Hitz, J. Lau, and M. Malcom. File system design for aRS\
file server appliance. IDSENIX Winter 1994

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. R. Ganger, E. Riedel, and A. Ailamaki. Diamond
A storage architecture for early discard in interactivercea In
FAST 2004

Kazeon. Kazeon:
kazeon. coni , 2008.
Kernel.org. inotify official readme.ht t p: / / ww. ker nel .
or g/ pub/li nux/ kernel / peopl e/rm /inotify/
README, 2008.

S. Khoshafian, G. Copeland, T. Jagodits, H. Boral, andaR.
duriez. A query processing strategy for the decomposedgstor
model. InICDE 1987

N. Lester, A. Moffat, and J. Zobel. Fast on-line indexistuction
by geometric partitioning. I€IKM 2005

A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Milleeavl
surement and analysis of large-scale network file systenk-wor
loads. INUSENIX 2008

A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. Llei
High-performance metadata indexing and search in petadaté
storage systemsJournal of Physics: Conference Serie5,
2008.
libkdtree++.
org/, 2008.
C. A. Lynch. Selectivity estimation and query optintiza in
large databases with highly skewed distribution of columines.

In VLDB 1988

U. Manber and S. Wu. GLIMPSE: A tool to search throughrent
file systems. IUSENIX Winter 1994

Microsoft, Inc. Enterprise search from microsofht t p: //
www. m crosof t. conlf Ent er pri sesear ch/,2008.

S. Mitra, M. Winslett, and W. W. Hsu. Query-based patiing

of documents and indexes for information lifecycle managem
In SIGMOD 2008

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systemdSENIX 2006

M. A. Olson. The design and implementation of the Inia@ndile
system. INUSENIX Winter 1993

Oracle. Oracle berkeley dbht t p: // ww. or acl e. com

t echnol ogy/ pr oduct s/ ber kel ey- db/ i ndex. htmni ,
2008.

J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nals
and B. B. Welch. The Sprite network operating systelfBEE
Computey 21(2):23-36, Feb. 1988.

Y. Padioleau and O. Ridoux. A logic file system. WSENIX
2003

Private Customers. On the efficiency of modern metasieeich
appliances, 2008.

J. T. Robinson. The K-D-B-tree: a search structuredogé mul-
tidimensional dynamic indexes. BIGMOD 1981

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. VejtBh W.
Carton, and J. Ofir. Deciding when to forget in the Elephast fil
system. INSOSP 1999

H. A. Simon. On a class of skew distribution functions.
Biometrikg 42:425-440, 1955.

C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. @ang
Metadata efficiency in versioning file systems.HAST 2003

M. Stonebraker and U. Cetintemel. "One Size Fits All'n Alea
whose time has come and gone.|GDE 2005)

M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural esa (it
time for a complete rewrite). INLDB 2007

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distatut
file system. INOSDI 2006

K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap iresic
with efficient compressionACM ToD$ 31(1), 2006.

Search the enterprisent t p: / / www.

http://1ibkdtree. alioth.debian.

