
Long-term File Activity and Inter-Reference Patterns

Lt. Colonel Tim Gibson
HQ, Pacific Command

Attn: J641
Camp Smith, HI, 96861

tgibson@acm.org

Ethan L. Miller
Department of CSEE

University of Maryland,
Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250
elm@csee.umbc.edu 1

Darrell D. E. Long
Jack Baskin School

of Engineering
University of California
Santa Cruz, CA 95064
darrell@cse.ucsc.edu 2

We compare and contrast long-term file system activity for different Unix
environments for periods of 120 to 280 days. Our focus is on finding
common long-term activity trends and reference patterns. Our analysis
shows that 90% of all files are not used after initial creation, those that are
used are normally short-lived, and that if a file is not used in some manner
the day after it is created, it will probably never be used. Additionally, we
find approximately 1% of all files are used daily. This information allows us
to more accurately predict the files which are never used. These files can
be compressed or moved to tertiary storage enabling either more users
per disk or larger user disk quotas.

1 Supported by the NASA Ames Research Center under grant NAG 2-1094.
2 Supported by International Business Machines Corporation (IBM).

1 Introduction
Physical storage devices have long been the slowest

components of any computer system. While disk and
tape storage devices have improved in the last
decade, their performance has not kept pace with
rapid increases in processor speed. This presents a
challenge to storage system designers because faster
CPUs encourage both more and larger files, placing a
higher demand on the file system and storage devices.
This problem has long been an issue for
supercomputer centers which have always managed
huge quantities of data, but recent advances in CPU
performance have brought traditional supercomputer
power to the desktop. Thus, system designers must
insure that workstation file systems can keep up with
the increased bandwidth and capacity that increased
CPU speed brings. While much previous work has
focused on improving short-term performance, we
focus on long-term reference patterns and their
influence on performance over days.

This paper is organized into nine sections. We begin
by reviewing previous disk activity studies in Section 2.
In Section 3, we briefly discuss our data collection and
analysis tools, which differ significantly from those
used in earlier studies. We describe the different types
of computing environments from which we collected
data in Section 4. The software written for this paper

analyzes the collected data and generates statistics.
The simplest analysis mode provides information
about daily activity. This is shown in Section 5.
Analysis of long-term trends is shown in Section 6. An
interesting product from this research is a comparison
of the same file system’s activity from either the file
name view, or from the operating system's underlying
numeric index. This comparison is done in Section 7.
We summarize our findings in Section 8 and briefly
discuss our future research in Section 9.
2 Related Research

In the 1980’s, both Smith [20], and Ousterhout [15]
made detailed studies of file activity on computing
systems. While their observations are still useful, some
of the underlying structure has lost relevance. For
example, Smith primarily observed text-based user
files for thirteen months; the size and nature of today’s
multimedia files, unforeseen when Smith collected his
data, are much different from the text-based files he
studied. Ousterhout’s very detailed file traces were
conducted over three to four day periods. While
Ousterhout’s work is very useful, his traces were
collected over such a short time that long-term trends
cannot be predicted from his data. Baker’s distributed
file system activity logs from 1991 [2] update
Ousterhout’s work, concentrate on low-level disk
activity, and have the same short trace periods as

Ethan L. Miller
This paper appeared at the 24th Annual International Conference on Computer Measurement and Performance (CMG '98), Anaheim, CA, December 1998, pages 976–987.

Ousterhout’s traces. More recently, Spasojevic and
Satyanarayanan [23] analyzed the long-term behavior
of a wide-area distributed file system, focusing on the
performance of the Andrew File System. They were
primarily interested in issues such as caching,
replication, and reliability in a large, distributed file
system, and used volumes rather than files as the
basis for their study, limiting its usefulness in showing
long-term behavior at the file level.

Other studies, [7,10,11,12] are directly applicable to
supercomputing centers, but may not apply to smaller
computing centers; both the size and number of files at
supercomputing centers far exceeds “normal”
computing activities. Also, supercomputing centers
usually have large tape libraries with tape robots
providing near-line storage for their data files, in some
cases exceeding hundreds of terabytes. In contrast,
smaller computing centers do not have tape robots
and only use tape for archiving purposes—a trend that
we believe may change as near-line storage robots
with either tape, digital-versatile–disk (DVD), or high-
capacity magneto-optical drives, become more
affordable and more practical.

Our work most closely resembles Strange’s disk
studies from 1992 [24]. We collect much of the same
information as Strange, and in fact corroborate a good
number of his findings. However, the traces used here
cover twice the time period as Strange’s traces.
Additionally, our analysis tool maintains a database
record for every file residing on the file system. This
database information allows us to keep track of how
individual records are accessed, modified, and
deleted. This temporal information on file activity is
new and has not been collected or analyzed before by
other authors.
3 Tools

Our tracing system was designed with one major
goal: gather useful information without requiring
operating system kernels to be recompiled. Our trace
gathering tool is a modified version of the GNU find
utility, which can be used to collect information on all
the files in a file system or directory. The collected
information includes the file’s index node number (i-
node), size, name, access time, i-node creation time,
modification time, owner, and group. The tracing
program can be run any time, and if the output is
placed into a directory or file system that is not being
studied, the tracing process is invisible to itself.
Additionally, the file’s name can be scrambled to
ensure user privacy on public systems while
preserving information about the relationships of files
in the system.

The second component of our system sorts two trace
files by i-node number, compares them, and generates
a file containing only references to files which have
changed, or have been created or deleted. This
program reduces the long-term storage requirements
and the amount of data which is analyzed later.
Difference files generated by this tool are fed into the

analysis program that generates statistics on the items
shown in Table 1. An additional advantage of using file
differences is the analysis tool runs faster because of
the reduced amount of I/O.

Our statistics collection and analysis package for file
systems has some weaknesses. Ousterhout [15] noted
that 80% of all file creations have a lifetime of less
than three minutes. Because the daemons, compilers
and other programs that created these files during
Ousterhout’s work still exist, we miss many of the
temporary files they create. However, our collection
system is designed to gather information about long-
term disk use and file system activity and growth;
temporary files that exist for less than three minutes
will not be moved to long-term storage and do not
contribute to long-term growth.

Additionally, the differencing program cannot
determine how many times a file is accessed or
modified in a single day. It only notices that an access
or modification occurred and when the most recent
event happened. Fortunately, what matters from a
long-term perspective is that the file was used on a
certain day, not how many times it was used.

The only way to collect more detailed information is
to either run the tracing system more often or to
change the operating system kernel and generate a
large detailed log file. Both of these options place a
heavier load on the computer system and we
deliberately decided against doing either. Additionally,
while collecting data with kernel modifications may
provide more data, it severely restricts the number and
type of computing installations willing to collect traces.
We had a difficult time convincing system
administrators to allow us to run our current collection
program; modifying multiple operating system kernels
and convincing the different system managers to use
the modified kernels (and to provide us the additional
log file disk space) was not a feasible solution.

Finally, there are two ways to “look” at any file on a
Unix file system. The normal way is with the file’s path
and name, and is exactly what people and most
programs do when they open or close a file. However,
the Unix operating system does not use file names to
manage files. Instead, the operating system gives
each file a unique number. We examine the activities
of both these file system views, based upon the file
names and the i-nodes, respectively. To distinguish
between the two, we use the terms hierarchical name
space and numeric index. The reason to examine
these two views of the same file system activity is they
often differ in significant ways. For example, the
numeric index system view has a large number of file
deletions and very few file modifications. This happens
because most applications do not modify physical disk
files, they simply erase the old version and replace it
with a new one. As a result, although a person may
edit the “same” file daily, in actuality a new file is
created every time she saves the file. This is in
contrast to the hierarchical name space view, based

on file names, where the number of file modifications
greatly exceeds file deletions.

In order to study the hierarchical name space view of
the file system activity, we use a small conversion

program which changes the file name in a trace file
into a number based a MD-5 hash of the file name
[16].

File Activity Statistics Collected
Accesses, Creates Total number of files and bytes. Produces histograms, grouped by file size, of the number of accesses or

creations.
Deletions Same as Access, with deletions where the i-nodes are reused tracked separately from deletions where the i-

node is not reused.
Modifications Same as Access with categories for files that are modified and increased in size, decreased in size, or

remained the same.
Modification Differences
(Deltas)

Same as Access with categories for files that are modified and increased in size or decreased in size. Tracks
files by the amount of change. Produces a two dimensional histogram of file size versus the amount of the
modification.

Change of Name, Owner, or
Group

Separate categories for change of name (Unix mv) change of owner (chown), change of group (chgrp).
Outputs the number of files only.

Long-Term Deletions Separate data is kept for overall deletions, files that were accessed before deletion, files which were modified
before deletions, how many times individual files were accessed or modified before deletion. Produces two
dimensional histogram by file size and days the file ‘lived’ before it was deleted.

Inter-Access and Inter-
Modification Period

Summary of accesses and modifications for the last 30 days. Two dimensional histogram by file size and
how many days pass between file accesses (or modifications) on individual files.

Files on System at Analysis
Completion

Summary of file system status at the end of the trace period. Produces two dimensional histogram by file size
and number of times files have been accessed or modified. One dimensional histogram, by file size, of files
that have never been used.

Table 1. Statistics collected by the analysis program.

4 Computing Environments Examined
We collected and analyzed daily traces for analysis

on four different computing systems. Two are at the
University of Maryland, Baltimore County (UMBC), the
third is at the University of California at Santa Cruz
(UCSC), and the fourth is at the U.S. Army’s Aberdeen
Proving Ground. Table 2 summarizes these systems.
The UMBC Computer Science (CS) department’s file
system trace collection began in October 1996. We
expanded our collection efforts on the CS systems in
May 1997, hence the long and short collection periods.

We also began collecting traces from the Aberdeen
Proving Ground (APG) and the University Computing
Services (UCS) file systems in May 1997.

The University of California traces were collected
daily with a different tracing process and do not
contain all long-term file system actions. Instead, they
provide a listing of the file names, along with the file’s
size, access, modification, and creation times, which
were modified during the past 24 hours. This affects
the amount of analysis we can provide.

Aberdeen Proving Ground
(APG)

University
Computing

Services (UCS)

CS Dept.
(Long Period)

CS Dept.
(Short Period)

Univ of CA,
Santa Cruz

Average Number of
Files on System

72,000 1,320,000 230,000 690,000 2,300,000

Disk Capacity
(avg. percent full)

3.6 GB (80%) 35 GB (70%) 11 GB (70%) 28 GB (50%) 84 GB

Type(s) of FS traced User and System User only User only User and System User and System
Number of FS traced 7 user, 1 system 9 user 4 user 6 user, 2 system 49
Type of System Administrative General-purpose Development Development Development
Number of Users 300 full-time, 2,000 email only ~15,000 ~500 ~500 ~500
Trace Length 210 days 239 days 287 days 157 days 207 days

Table 2. Summary of Systems Examined

5 Basic File System Activity
This section analyzes daily file activity using the file

system analyzer’s simplest mode, which has no long-
term memory about individual files. As a result, it
provides very little information about individual file
activity.
5.1 Distribution of File Sizes

The first file system attribute we examined was the
distribution of file sizes across the different file
systems, as shown in Figure 1. This figure shows both
the percentage and cumulative percentage of files on
each system by file size groupings. The bar chart

shows the percentage of files in each size category,
while the lines are the cumulative percentage.

The interesting thing to note in Figure 1 is that most
files are relatively small, more than half are less than 8
KB. While the graph stops at 1 MB, this encompasses
99.5% of the files collected at the university and 96%
of the files on the APG system. The APG users
occasionally had a large word processing, email files,
keeping the APG averages lower than the CS and
UCS system averages. Surprisingly, there is also little
difference in size distribution between the Computer
Science user and system-level file systems.

Figure 1. File Sizes, by size category and cumulative.

One of the most important facts to gather from Figure
1 is that 80% or more of the files are smaller than 32
KB. On the other hand, while only 25% are larger than
8 KB, this 25% contains the majority of the bytes used
on the different systems, as shown in Figure 2. This
figure depicts the total number of megabytes used by
file size category on each system. The totals between
the different systems vary because the disk capacities
are different.

Figure 2. Total disk spaced used by file size category.
The bar chart shows distribution by size category, the
line chart shows the same data cumulatively.

5.2 Usage by Transaction Type
The software's simplest analysis mode provides a

variety of information on the number of files and bytes
used daily on each file system. Figure 3 and Figure 4
show the average daily file use per transaction type on
the different systems. Figure 3 shows, as a percentage
of daily file activity, the percentage of files accessed,
created, deleted, or modified. In all cases, the greatest
percentage is in the accessed category. Approximately
one-half as many files are created and deleted
compared to those accessed. This is logical because
many files are only accessed (e.g., program files, data
files, and configuration files), rather than created or
deleted. The number of file modifications lags far
behind all other actions on the Computer Science

systems. The reason there are so few modifications on
the CS file systems is that many computer
applications, particularly the applications programmers
use, do not modify files, rather they create new files
and rename or delete the original.

Figure 3. Activity by type, percentage of total
transactions.

For instance, when a programmer changes a file with
a text editor and saves the changes, the following
steps occur:

• User gives command to open the file
/home/profile

• Operating System finds the i-node (e.g.,
34,717) associated with /home/profile

• Operating System gets the file’s disk block
numbers from the i-node

• Operating System reads the disk blocks and
loads the file into memory (RAM)

• User makes changes and “saves” the file
• Operating System writes the modified file to a

new set of disk blocks with a new i-node
• Operating System frees the old disk blocks

and the old i-node
• Operating System updates the file name

/home/profile to point to the new i-node.

As a result, from the viewpoint of the operating
system’s numeric index, saving the file with a text
editor results in a file creation and a file deletion, not a
file modification. Most programs, including word-
processors, use the same technique as the text editor.
An exception to this general rule is electronic mail (e-
mail) packages, which actually modify the files
contained in a user’s in-box. Note: the in-box for
electronic mail on Unix systems is one file, regardless
of how many messages are contained within the in-
box.

The result of this exception for e-mail files is seen in
Figure 4. Figure 4 is similar to Figure 3, except that it
displays bytes instead of files. On both the UCS and
the APG systems, most users only use the computer
system for e-mail. The result is that while only 15% of
the files on these systems are modified daily (as
shown in Figure 3), these modifications account for
over 70% of the bytes used daily (in Figure 4) on the
UCS and APG systems. The Figure 4 increase in
modifications can also be seen in the Computer
Science traces; the increase is not as noticeable in the

CS data because most CS users do more with the
system than read e-mail.

Figure 4. Activity by type, percentage of total
transaction bytes.

While Figure 3 and Figure 4 provide interesting
observations about the manner in which users and
applications use and modify files, most importantly
they illustrate the need to optimize file accesses.
5.3 Growth of Individual Files from Modifications

The basic analysis also provides information about
the ratio between modifications that make a file larger,
modifications that leave the file the same size, and
those that make the file smaller. On the CS systems,
all these categories of modification were approximately
the same. However, on the UCS and APG systems,
the number of files modified that increased in size was
double the other two categories added together. While
46% of the modifications on the CS systems increased
a file by 512 bytes or less, 67% of the modifications on
the UCS system were in the 1 KB to 16 KB range.
Again, we attribute this to the e-mail files, because
receiving a few e-mail messages daily causes this type
of increase.

On the UCS system, e-mail activity also appears in
how files decrease in size. This occurs because many
users keep their e-mail messages for a long time, with
their single in-box file slowly growing in size. However,
users eventually delete many of the old messages,
usually at one time. On the UCS system, 48% of file
modifications occurred when a file lost between 4 KB
and 32 KB. The APG system behavior is similar. In
contrast, 69% of the CS file modifications reduce files
less than 512 bytes, with only 16% falling into the 4 KB
to 32 KB range. While the UCS and the APG activity is
in keeping with how users handle e-mail files, the
activity on the CS systems is consistent with
development activity. Both these findings and
observations are in accord with the different system
environments.

This file growth rate has direct implications for
operating system design. When a file needs to
increase in size, some operating systems allocate
additional space based on the file’s original size—the
larger the file the more space is allocated. In order to
recover unused disk space, the operating system must
keep track of the files that received additional space,
and recover any unused disk space at a later time.
However, as we have shown, files do not increase in
direct proportion to their original size. Because
relatively few Unix files increase in size at all, it may be

more efficient to allocate disk blocks differently. For
example, disk blocks can even be allocated one block
at a time — writing some files will take longer, but the
additional CPU cycles to find unused disk blocks are
eliminated.
5.4 File System Growth

The previous sub-sections showed that:
• Few numeric index files are modified;
• At most, half of all numeric index modifications

result in a file size increase; and
• Most numeric index file size increases from

modifications are less than 32 KB.

A logical question to ask after discovering these facts
about file modifications is ‘what causes file systems to
grow?’ Figures 5 and 6 show byte creep on the CS
and UCS systems. Byte creep is the cumulative
number of bytes added to the system by creations and
modification increases, with the number of bytes
deleted or lost from modification decreases subtracted.
Both the UCS and the CS file systems became larger
during the trace collection, however, the reasons for
these increases were different. For example, the UCS
system increased primarily because existing files
became larger from file modifications. The number of
bytes gained or lost from file creations and deletions
remained relatively constant. Note: The spike in the
UCS trace on day 55 and day 56 is caused by a disk
drive failure and a tape restore over a weekend.

Figure 5. Byte Creep on the UMBC UCS Systems
(9 file systems, 239 days, May 1997—January 1998).

The CS file system, on the other hand, exhibits
markedly different behavior. Nearly all file system
growth on the CS system came from new files, while
file system growth or loss from modifications remained
relatively constant. We believe the cause of this
disparity is the different user populations and
applications on the two systems. While the overall file
system growth is the same in both cases, the cause is
different. The information in Figures 5 and 6 is of direct
interest to system administrators for whom the source
of file system growth is a constant question.
5.5 Percentage of Files Used Daily

Both Figure 5 and Figure 6 require a break in the
graph’s y-axis to allow detail in the graph’s lower
section. This is because the proportion of bytes used

to total bytes on the system is relatively low. In fact,
very few files, or bytes, on a file system are used daily.
Figure 7 shows the average percentage of files and
bytes used daily on the different systems.

Figure 6. Byte Creep on the UMBC Comp. Science
System, 8 file systems, 157 days, Aug 1997-Jan 1998.

Figure 7a. Average percentage of files used daily.

What is clearly seen in Figure 7a is the fact that
relatively few files are used on any one day —
normally less than 5%. Similarly, the number of bytes
used daily is also low, as Figure 7b shows. The
percentage of bytes used on the UCS and the APG
systems is higher because the smaller disk space
quotas make users delete unnecessary files. However,
in no instance does the number of bytes used daily
exceed 25%. Otherwise, Figures 7a and 7b are in
keeping with earlier findings in this chapter where we
showed that most file activity is caused by file
accesses, and that byte activity is either caused by
creations and deletions, or modifications, depending
on the type of user. The fact that so little of the data on
the file system is used is important because it provides
support for using an integrated tertiary storage system
(or compressing unused files) for the vast majority of
files that are not regularly used.
5.6 Summary of Daily Statistics

The last few sub-sections presented the information
and data analysis capabilities from the simplest
analysis mode. The information available in this mode
consists primarily of the number of files and bytes
used daily by the different file transaction types.
Information about the system’s overall activity, file size
distributions, the amount of file increases and
decreases from modifications, and the source of file
system growth can all be analyzed. However, this

information is based upon what transpired on an
individual day. Information in not kept about individual
files, limiting this mode’s analysis capabilities.

Figure 7b. Average percentage of bytes used daily.

6 Long-term File System Activity
While Figures 5 and 6 showed that only a small

proportion of files are used each day, we have not yet
shown individual file usage patterns. Tracking
individual activity patterns is important; if less than 5%
of the files are used daily—as Figure 7 shows—but
each day that 5% represents different files, in less than
a month all the files on the file system will be used. If
this is true, it will be very difficult to predict which files
will be used daily, rendering integrated tertiary storage
impractical. However, if the 5% represents many of the
same files every day, integrated tertiary storage or
compression may be viable.

In contrast to the simple analysis mode’s daily usage
patterns, a more advanced mode provides the ability
to monitor individual file activity patterns. Figure 8
shows that fewer than 30% of the files remaining on
any file system at trace completion were used during
the trace period (the trace periods were all longer than
150 days), with one exception. The exception is the
CS system-level files where a higher usage rate is
seen, as expected, because many of the files are
commonly used programs and libraries. Overall, fewer
than 50% of all non-system–level bytes were used on
any system. Figure 8 shows that most of the files and
bytes remaining on the file systems were never used
in any way during the trace collection period.
Consequently, if the files which were never used
resided on tertiary storage instead of disk, their
absence from the disk would have no effect at all.

Figure 8. Long-term file system usage.

One of the file system activity traits which can be
inferred from Figure 8, particularly when compared to
Figure 5 and Figure 6, is that some files are used
regularly. If this was not the case, and all files on the
file systems were used intermittently, the daily usage
percentages could be the same, but the end-of-trace
percentages would probably be higher. However, this
is not what happens, as we will show in the next three
sub-sections.
6.1 Long-term Repeated Usage

Another analytic tool we provide is the inter-access
and inter-modification period statistics shown in Figure
9 and Figure 10. Both these figures show the number
of days between consecutive accesses or
modifications. For example, a file that is accessed on
both Monday and Wednesday has a two day inter-
access period. Both Figure 9 and Figure 10 show that
most accesses and modifications occur on
consecutive days. Generally, if a file is accessed one
day and not the following day, the file has less than a
10% chance of being accessed on the third day. In
fact, the file has between a 15% and 45% chance of
ever being accessed again, depending on the
computer system. There is one anomaly in Figure 9
access patterns; the CS system-level files occasionally
have small spikes. They are probably caused by some
type of system routine (or user program) which
periodically accesses many system-level files that are
otherwise rarely used.

Figure 9. Inter-Access period showing the elapsed
time between consecutive accesses. The bar chart
shows distribution by size category and the line chart
shows the same data cumulatively.

Figure 10 does not have any modification spikes or
other anomalies. However, the percentage of files
modified with one day intervals is lower than for files
accessed. Similarly, the percentage of files modified
per time interval falls off more slowly than for files
accessed—many users checking their individual e-mail
files once every several days can explain this
behavior.

Figure 10. Inter-Modification period showing the
elapsed time between consecutive modifications. The
bar chart shows distribution by size category, the line
chart shows the same data cumulatively.

When the information in Figure 9 and Figure 10 is
used in conjunction with data presented earlier in this
section on long-term statistics, there is growing
evidence that files which are used—accessed or
modified—are used on a regular basis. Conversely,
files that are not used, tend to remain unused. Again,
files that are not regularly used could be either
compressed or moved to tertiary storage without
affecting system performance. Figure 9 and Figure 10
both reinforce the proposition that a small percentage
of files are used regularly, and a large percentage of
files are used infrequently, or not at all.

Figure 11 illustrates the activity of files that are used
(accessed or modified) and proves that relatively few
files are used regularly throughout the trace period.
The x-axis of Figure 11 is a series of categories
showing the number of days a file was accessed or
modified (or both). The categories extend from one
day to more than 129 days. Because all the traces
were collected for at least 157 days (usually more than
200 days), all the categories are valid for all the file
systems. The y-axis percentage for each category is
based upon the total number of files created during the
trace period for each file system.

Figure 11 shows that 5–10% of all files created are
only used on one day, depending on the system. On
the other hand, approximately 0.8% of the files are
used more than 129 times—essentially every day.
These files which are used more than 129 times
account for less than 1% of all files created and
approximately 10% of all the files which were
accessed or modified. Obviously, for a tertiary storage
system to work efficiently, these files must be kept on
disk at all times.

Figure 11. Number of days a specific file was either
accessed or modified after it was created. Shown as a
percentage of all files created during the trace period,
logarithmic scale.

6.2 Reference Locality
The fact that a very small number of files are used

nearly every day increases the likelihood that most
files which are used exhibit reference locality. Locality
of reference is a term normally used with RAM and
cache memories. When data is moved into the cache
memory, it is very likely to be used again. Indeed, this
property is what makes cache memory systems
worthwhile. Caching stratagems try to ensure that data
needed in the immediate future is kept in the cache.
Because the file system can be viewed as a super-set
of the RAM and cache data, it is possible that the files
on secondary storage also have the locality of
reference property. In fact, this is true, as Figure 12
shows. One of the statistics the software collects is the
number of files accessed and modified during the last
X of Y days. The data shown is from the 7 day interval.
The y-axis in Figure 12 is based on the average
number of all files that were accessed or modified daily
per system. For example, on an average day, 36,994
files were accessed daily on the UCS system.
Likewise, an average of 2,380 files were used every
day in the last seven days. Thus, an average of 6.48%
of the files accessed had been accessed daily for the
last week.

Figure 12. Average percent of files used in exactly last
X of 7 days. Shown as a percentage of the average
number of daily accesses and modifications.

This data allows us to verify the presence of
reference locality for file accesses and file
modifications. One note of interest about Figure 12 is
the fact that on every system more files are used every
day of the week than for any other single sub-period.

The only anomaly found in Figure 12 is the high level
of activity for the long UMBC Computer Science
traces. This is explained by the fact that the faculty3
file system in the long CS traces became full and
inactive during the trace collection period, and two
others (faculty and grad2) became less active as the
trace period progressed. For example, the faculty3 file
system averaged less than 220 file transactions per
day, compared to 3,311 transactions per day on the
most active file system from the same traces. As a
result, the combined activity level for these traces was
lower than any other trace (see Figure 7 and Figure
11). However, while these three file systems were less
active than other file systems, the files which were
active on these three tended to be more active than on
other file systems. This is because some users were
running out of disk space and had to keep unused files
at a minimum. The result is seen in Figure 12.
Regardless, the overall activity level for the long
Computer Science traces as a percentage of total
files—Figure 12 is a percentage of total accesses and
modifications—is relatively low, as shown in Figure 7
and Figure 11.
6.3 File Lifetimes

One reference locality characteristic that cache data
has is that the cache data is eventually replaced. In
the case of file systems, this translates to the files
either lapsing out of use or being deleted. Figure 8
shows that most of the files on a file system are never
used. By comparing Figure 8 with Figure 7, it can be
inferred that the number of files on the system which
were used at least once increases over time. (In fact,
the simulator shows this directly, but this graph is not
shown for brevity.) The proposition that most files tend
to lapse out of use can be supported by the facts that
most files were not used during the trace periods, and
that most files which were used tended to only be used
a few times.

In keeping with the theory of reference locality, the
deletion rate for used files should initially be fairly low,
and increase as the files get older. This slowly
increasing deletion rate for used files is shown in
Figure 13. The deletions are shown as a percentage of
all files deleted with the same lifetime. For example,
the UCS system has a value of 11.02% for the two day
lifetime. This value is computed by dividing the number
of files which were used and then deleted two days
after being created (15,373) by the total number of
files deleted two days after being created (139,491).
Note: A file that is created one day and deleted before
the next trace lives ‘zero’ days.

Figure 13 shows that files which are used tend to live
longer in comparison with files which are not used. For
example, files which are used account for less than

20% of the files deleted in the first week after they are
created. Thereafter, the percentage of files which were
used and deleted rises. This is true for all systems
except the APG system, where the lifetime of used
files varies widely. We believe the APG data is a result
of both the user behavior and strict disk quotas.
However, even with the APG data, Figure 13 clearly
reinforces the theory of locality of reference by
showing that files which are used are deleted more
slowly than files which are not used. This is particularly
true on all three university systems where few active
files are deleted until 20 to 30 days have passed.

Figure 13. Lifetimes of used files as a percentage of
all files deleted with the same lifetime.

To put Figure 13 in perspective and to give the
reader a grasp of both the file deletion rate and the
relationship between deletions for used versus unused
files, we provide Figure 14. This figure shows the
cumulative rate of deletions for files that were used
(accessed or modified) and the cumulative rate of
deletions for files that were created and never used.
These rates are shown as a percentage of all the files
that were deleted during the entire trace period. For
example, approximately 30% of all deletions are
deletions of files that were on the system for only one
day (present at one trace and gone the next). The
figure also shows that 85% of all deletions are upon
files that were not used, except for the files on the
APG file system. Similarly, for the first two weeks,
unused files at the university are deleted more quickly
than files that are used. At the two week point, unused
files are deleted at approximately the same rate as
files that were used. Interestingly, the deletion rates for
the different file types are virtually identical on all three
university systems.

The APG data is different from the university data.
Unused files are deleted more slowly, while the used
files are deleted more quickly. The deletion rate on the
APG system increases for both types of file at the two
month point, possibly from users conducting periodic
housecleaning.
6.4 Summary of Long-term File System Activity

The data and analysis presented in the preceding
three sub-sections are extremely important for
understanding file system activity, and to our
knowledge the extensive data collection and analysis
is unique. To summarize our findings:

Figure 14. File lifetimes for used and unused files as a
percentage of total deletions.

• Files which are used have short inter-access
and inter-modification times;

• An extremely small number of files are used
every day (normally less than 1% of all files on the
file system);

• Files which are being used exhibit reference
locality, where a file that is used is likely to be
used again, and vice versa;

• Files which are not used for a several days are
unlikely to be used again; and

• Files which are not used are deleted more
quickly than files that have been used.

7. Hierarchical Name Space Activity
In the preceding two sections we discussed and

analyzed disk activity as seen from the viewpoint of
the operating system’s numeric index. As pointed out
earlier, the disk activity shown by the numeric index is
not necessarily the same activity the user observes
using the hierarchical name space viewpoint. This
section shows the key file system activity similarities
and differences observed when data is collected using
the hierarchical name space viewpoint instead of the
numeric index.

The most important thing to remember when
comparing the file system’s activity using the
hierarchical name space (i.e., the hierarchical paths
and file names) with the numeric index is that they are
merely two different views of the same activity. The
traces collected information regarding the activity of
the physical files on the file system; any changes
made to the files during the trace period were made on
both the hierarchical name space view and the
numeric index view of the file system. Any differences
between these two views can be ascribed to what the
view concentrates on: the hierarchical view focuses on

the file’s path and name, while the numeric index
focuses on the operating system’s underlying
implementation and numeric index.

7.1 Key Differences Between Hierarchical Name
Space and Numeric Index Activity

The only real difference between the hierarchical
name space view of the file system’s activity and the
numeric index view is in the area of file modifications
and file deletions. The physical file blocks referenced
by the i-node’s numeric index are rarely modified,
except in the case of e-mail files. In contrast, the
hierarchical file names in the hierarchical name space
are regularly modified. The result is that the number of
deletions in the hierarchical name space drops off
immensely while the number of modifications are
much greater.

This relationship is shown in Figure 15. Because the
number of files in the hierarchical view and the
numeric index view are not the same—a single i-node
can have multiple file names—Figure 15 is normalized.
A value of 1.0 in Figure 15 denotes equivalence
between the numeric index view and the hierarchical
name space view of the file system’s activity. A value
greater than 1.0 shows that hierarchical name space
view had proportionately more transactions than its
numeric index counterpart. A value less than 1.0
shows proportionately less transactions in the
hierarchical name space.

Figure 15. Proportion of average transactions,
hierarchical name space to numeric index. A value of
1.0 denotes equivalence, greater than 1.0 shows more
transactions in the hierarchical name space.

Figure 15 shows that the ratio between numeric
index activity and hierarchical name space activity
remained relatively constant for file accesses and file
creations. On the other hand, file deletions are almost
non-existent in the hierarchical name space view of
the file system, in return for a corresponding
abundance of modifications. Essentially, many
numeric index deletions become hierarchical name
space modifications. Because the number of
modifications are greater in the hierarchical name
space view, the distribution of file and byte
transactions is also different from the numeric index
view, as shown in Figure 16. (Figure 16 is the same
data plotted in Figure 7, except Figure 16 uses the
hierarchical name space view instead of Figure 7’s

numeric index view.) While these differences are
significant, they are essentially the only distinctions
between the hierarchical name space and the numeric
index views of the same file system activity.
7.2 Similarities between the Hierarchical Name
Space and the Numeric Index

Every other characteristic of file system activity
discussed in Section 5 and Section 6 from the
viewpoint of the numeric index is almost identical to
the hierarchical name space perspective. The
percentage of files used daily and during the entire
trace are very close using either scheme. Similarly, the
size distribution of files on the system, the size
distribution of files modified, and the amount files
increased or decreased when modified using the
numeric index observations are nearly identical to the
corresponding hierarchical name space observations.

Figure 16a. Average percentage of files used daily.
Hierarchical name space view only.

Figure 16b. Average percentage of bytes used daily.
Hierarchical name space view only.

The periodic usage and reference locality observed
in the numeric index is also present in the hierarchical
name space, although the activity drop-off rate is
slightly slower in the hierarchical name space view.

An excellent example of reference locality in the
hierarchical name space is provided by the traces from
the University of California system. These traces only
collected the names of files (i.e., the hierarchical name
space) which had been modified within the last 24
hours. As a result, their usefulness is limited. However,
they can show how many files in the hierarchical name
space are modified on consecutive days, as Figure 17
does. Obviously, an average of 100% of the files were
modified ‘today,’ shown as Day 0 in the chart.
However, only 42% were modified two days in a row.
By the time a week has passed, the percentage of files

modified on every one of the previous seven days is
less than 20%. The number of files modified on
consecutive days continues to drop, until only 3.8% of
the files modified daily were modified every day of the
last 30 days.

Reference locality can be assumed to be a general
file system characteristic because:

• It has been shown to exist on both the numeric
index and hierarchical name space views of the
traces from UMBC and APG;

• It has been shown to exist in the University of
California traces; and

• It has been shown to exist by earlier
researchers (Jensen and Reed [7], Miller [11, 12,
13])

Figure 17. Percentage of files from the University of
California traces, modified for N consecutive days in a
row.

8 Summary
This paper has provided a comprehensive look at

long-term file system activity. This type of data is
useful to both file system designers and system
administrators because it provides an insight to daily
file system activity. While this type of analysis has
been done before, it has not been done recently. The
most recent research of this detail is Satyanarayanan’s
work in 1981 [18]. Clearly, the size and complexity of
file systems has changed significantly since 1981, as
well as the types of applications being used, so a more
recent file system survey was needed.

The data provided by the long-term mode is of less
interest to system administrators, but is very useful to
file system designers and migration algorithm
researchers. For example, the data on deletion rates
and reference locality can be directly applied to file
system design. A case in point is in deciding when to
clean file segments in a Log-structured File System
(LFS). Studies of long-term file system activity can
significantly assist in this area.

To our knowledge, the differences between the
hierarchical name space and the numeric index views
of file system activity have never been studied.
Previous researchers (Baker [2], Burns [3], Kumar [8],
Miller [11, 12, 13], Mummert [14], Ousterhout [15],
Shirriff [19], and Strange [24]) examined file system
activity at the hierarchical name space level, despite
the fact that many of them also collected the numeric
index information. Occasionally, researchers have
used existing data and focused on the physical

components. For example, Gribble, et. al, [5, 6] used
Ousterhout’s [15] and Baker’s [2] existing file system
traces to check for self-similarity in file system activity
at the read/write level. Yet, a specific examination
comparing and contrasting numeric index and
hierarchical name space activity has not been done
before.

We have also presented evidence that shows
hierarchical name space and numeric index activity
are similar in many respects. For example, both
possess locality of reference, and the same basic
activity patterns. These basic activity patterns include:
• Deleting files which are used at a lower rate than

files which are unused;
• Periodic file usage; and
• A high proportion of ‘used’ files either lapsing into

disuse or being deleted.

While hierarchical name space files share these
characteristics with the numeric index view of the
same activity, the hierarchical name space view has a
much lower deletion rate and a higher modification
rate. This has an impact on file migration algorithms.
The majority of the numeric index activity is file
accesses, creations, and deletions. Because a file
migration algorithm has no control over file creations
and file deletions, a file migration algorithm working
with the numeric indexes has to contend primarily with
file accesses. In contrast, migration algorithms being
used with the hierarchical name space (i.e., the
hierarchical file names) must deal with the same file
accesses and many more file modifications.

Most programs access the underlying file system
through the Unix operating system’s hierarchical file
name interface. As a result, the hierarchical file system
provides researchers a better idea of user and
program activity. However, the numeric index view of
the file system is better for examining what the
operating system does internally, how it manages
physical devices, and how it stores data.

Modeling with the hierarchical file names is more
intuitive because people usually think of files as
names, not disk blocks and numeric indexes. On the
other hand, the operating system manages the file
system with the numeric indexes found in the i-nodes,
and not with the file names.
9. Future Research

Using the findings from this research, we have been
able to develop a tertiary storage migration algorithm
that “ages” files when they are not used [4, 22]. This
technique works an order of magnitude better than the
current “best” algorithm, space-time [20, 21, 24].

Our future research includes: applying this software
and data collection technique to Windows NT, in order
to provide a comparison between NT file system
activity and Unix; and developing an automatic system
with the new technique to either compress unused files
or move these files to integrated tertiary storage.

References
[1] Maurice J. Bach, The Design of the Unix

Operating System, Prentice Hall, Englewood Cliffs, NJ
1990.

[2] Mary G. Baker, John H. Hartmon, Michael Kupfer,
Ken W, Shirriff, and John K. Ousterhout,
“Measurement of a Distributed File System,” Operating
System Review 25(5), Proceedings of the 13th ACM
Symposium on Operating Systems Principles, 1991,
pp. 198-212.

[3] Randal C. Burns, Darrell D. E. Long, “Efficient
Distributed Backup with Delta Compression,”
Proceedings of the Fifth Workshop on I/O in Parallel
and Distributed Systems, ACM: San Jose, Nov. 1997,
pp. 26-36.

[4] Timothy J. Gibson, Long-term File System Activity
and the Efficacy of Automatic File Migration, Doctoral
Dissertation, University of Maryland, Baltimore County,
May 1998.

[5] Steven D. Gribble, Gurmeet Singh Manku, Eric A.
Brewer, Timothy J. Gibson and Ethan L. Miller, “Self-
Similarity in File-System Traffic,” Proceedings of ACM
SIGMETRICS '98, Madison, Wisconsin, June 1998,
pp. 141-150.

[6] Steven D. Gribble, Gurmeet Singh Manku, and
Eric A. Brewer, “Self-similarity in File-systems:
Measurements and Applications,” Unpublished Paper,
Department of Computer Science, University of
California, Berkeley, 1996.

[7] David W. Jensen and Daniel A. Reed, “File
Archive Activity in a Supercomputer Environment.”
Technical Report UIUCDCS-R-91-1672, Department
of Computer Science, University of Illinois, Urbana, IL.

[8] Puneet Kumar and M. Satyanarayanan, “Log-
based directory resolution in the Coda file system,”
Proceedings of the Second International Conference
on Parallel and Distributed Computing, January 1993,
pp. 202–213.

[9] Samuel J. Leffler, et al., The Design and
Implementation of the 4.3BSD UNIX Operating
System, Addison Wesley, Reading Massachusetts,
1990.

[10] John Merrill and Eric Thanhardt, “Early
Experience with Mass Storage on a UNIX-Based
Supercomputer,” Tenth IEEE Symposium on Mass
Storage Systems, Monterey, CA 1990, pp. 117-121.

[11] Ethan L. Miller and Randy H. Katz, “An Analysis
of File Migration in a UNIX Supercomputing
Environment,” USENIX Winter 1993 Conference, San
Diego, CA, January 1993, pp. 421-434.

[12] Ethan L. Miller and Randy H. Katz, “Analyzing
the I/O Behavior of Supercomputer Applications,”
Eleventh IEEE Symposium on Mass Storage Systems,
Monterey, CA 1991, pp. 51-55.

[13] Ethan L. Miller and Randy H. Katz, “Input/Output
Behavior of Supercomputing Applications,”
Proceedings of Supercomputing ‘91, Albuquerque,
NM, 1991, pp. 567-577.

[14] L. Mummert and M. Satyanarayanan, “Long-
term Distributed File Reference Tracing:
Implementation and Experience,” Software–Practice
and Experience, Volume 26(6), June 1996,
pp. 705-736.

[15] John K. Ousterhout, Herve Da Costa, David
Harrison, John Kunze, Mike Kupfer, and James
Thompson, “A Trace-Driven Analysis of the UNIX 4.2
BSD File System.” Operating System Review 19(5),
Proceedings of the 10th ACM Symposium on
Operating Systems Principles, 1985, pp. 15-24

[16] R. L. Rivest, “The MD5 Message Digest
Algorithm,” RFC 1320, April 1992.

[17] Mendel Rosenblum and John K. Ousterhout,
“The Design and Implementation of a Log-Structured
File System,” Operating System Review 25(5),
Proceedings of the 13th ACM Symposium on
Operating Systems Principles, 1991, pp. 1-15.

[18] M. Satyanarayanan, “A Study of File sizes and
Functional Lifetimes,” Proceedings of the 8th
Symposium on Operating systems Principles,
Association of Computing Machinery, 1981,
pp. 96-108.

[19] Ken W. Shirriff and John K. Ousterhout, “A
Trace-Driven Analysis of Name and Attribute Caching
in a Distributed System,” USENIX Winter 1992
Conference, San Francisco, CA, January 1993, pp.
315–332.

[20] Alan Jay Smith, “Analysis of long term file
reference patterns for application to file migration
algorithms.” IEEE Transactions on Software
Engineering SE-7(4), 1981, pp. 403-417.

[21] Alan Jay Smith, “Long term file migration:
development and evaluation of algorithms.”
Communications of the ACM 24(8), 1981, pp. 521-532.

[22] Keith A. Smith and Margo I. Seltzer, “File
System Aging—Increasing Relevance of File System
Benchmarks,” Proceedings of the 1997 SIGMETRICS
Conference, June 1997, Seattle, WA, pp. 203-213.

[23] Mirjana Spasojevic and M. Satyanarayanan, “An
Empirical Study of a Wide-Area Distributed File
System,” ACM Transactions on Computer Systems
14(2), May 1996, pp. 200-222.

[24] Stephen Strange, “Analysis of Long-Term UNIX
File Access Patterns for Application to Automatic File
Migration Strategies,” Technical Report UCB/CSD-92-
700, Computer Science Division (EECS), University of
California, Berkeley, California, 1992.

[25] Trevor Blackwell, Jeffrey Harris, and Margo
Seltzer, “Heuristic Cleaning Algorithms in Log-
Structured File Systems,” Proceedings of the 1995
USENIX Technical Conference, Berkeley, CA, Jan
1995, pp. 277–287.

